EPJ Appl. Metamat.
Volume 7, 2020
Metamaterial Research Updates from China
Article Number 9
Number of page(s) 6
Published online 19 January 2021
  1. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and Negative Refractive Index, Science 305, 788 (2004) [CrossRef] [PubMed] [Google Scholar]
  2. S. Linden, C. Enkrich, M. Wegener, J.F. Zhou, T. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 terahertz, Science 306, 1351 (2004) [CrossRef] [PubMed] [Google Scholar]
  3. H.T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices, Nature 444, 597 (2006) [CrossRef] [PubMed] [Google Scholar]
  4. Q. Zhao, J. Zhou, F.L. Zhang, D. Lippens, Mie resonance-based dielectric metamaterials, Mater. Today 12, 60 (2009) [CrossRef] [Google Scholar]
  5. S. Jahani, Z. Jacob, All-dielectric metamaterials, Nat. Nanotechnol. 11, 23 (2016) [CrossRef] [Google Scholar]
  6. N.F. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334, 333 (2011) [CrossRef] [PubMed] [Google Scholar]
  7. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater. 11, 426 (2012) [CrossRef] [Google Scholar]
  8. S.B. Glybovski, S.A. Tretyakov, P.A. Belov, Y.S. Kivshar, C.R. Simovski, Metasurfaces: from microwaves to visible, Phys. Rep. 634, 1 (2016) [CrossRef] [Google Scholar]
  9. F. Ding, A. Pors, S.I. Bozhevolnyi, Gradient metasurfaces: a review of fundamentals and applications, Rep. Prog. Phys. 81, 026401 (2017) [CrossRef] [Google Scholar]
  10. S. Wang, P.C. Wu, V.C. Su, Y.C. Lai, M.K. Chen, H.Y. Kuo, B.H. Chen, Y.H. Chen, T.T. Huang, J.H. Wang, R.M. Lin, C.H. Kuan, T. Li, Z. Wang, S. Zhu, D.P. Tsai, A broadband achromatic metalens in the visible, Nat. Nanotechnol. 13, 227 (2018) [CrossRef] [Google Scholar]
  11. A.M. Shaltout, V.M. Shalaev, M.L. Brongersma, Spatiotemporal light control with active metasurfaces, Science 364, eaat3100 (2019) [CrossRef] [Google Scholar]
  12. N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices, Nat. Mater. 11, 917 (2012) [CrossRef] [Google Scholar]
  13. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Planar photonics with metasurfaces, Science 339, 1232009 (2013) [CrossRef] [Google Scholar]
  14. H. Cheng, Z. Liu, S. Chen, J. Tian, Emergent functionality and controllability in few-layer metasurfaces, Adv. Mater. 27, 5410 (2015) [CrossRef] [Google Scholar]
  15. H.-T. Chen, A.J. Taylor, N. Yu, A review of metasurfaces: physics and applications, Rep. Prog. Phys. 79, 076401 (2016) [CrossRef] [Google Scholar]
  16. S. Chen, Z. Li, W. Liu, H. Cheng, J. Tian, From single-dimensional to multidimensional manipulation of optical waves with metasurfaces, Adv. Mater. 31, 1802458 (2019) [CrossRef] [Google Scholar]
  17. R.S. Yang, Q.H. Fu, Y.C. Fan, W.Q. Cai, K.P. Qiu, W.H. Zhang, F.L. Zhang, Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators, Photonics Res. 7, 955 (2019) [CrossRef] [Google Scholar]
  18. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7, 2898 (2013) [CrossRef] [PubMed] [Google Scholar]
  19. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol. 9, 768 (2014) [CrossRef] [Google Scholar]
  20. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004) [CrossRef] [PubMed] [Google Scholar]
  21. A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6, 183 (2007) [CrossRef] [PubMed] [Google Scholar]
  22. N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C.M. Soukoulis, Optically implemented broadband blueshift switch in the terahertz regime, Phys. Rev. Lett. 106, 037403 (2011) [CrossRef] [PubMed] [Google Scholar]
  23. O. Balci, N. Kakenov, E. Karademir, S. Balci, S. Cakmakyapan, E.O. Polat, H. Caglayan, E. Özbay, C. Kocabas, Electrically switchable metadevices via graphene, Sci. Adv. 4, eaao1749 (2018) [CrossRef] [Google Scholar]
  24. Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, C.M. Soukoulis, Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances, ACS Photonics 5, 1612 (2018) [CrossRef] [Google Scholar]
  25. W. Wang, Z. Song, Multipole plasmons in graphene nanoellipses, Physica B 530, 142 (2018) [CrossRef] [Google Scholar]
  26. M. Freitag, T. Low, F. Xia, P. Avouris, Photoconductivity of biased graphene, Nat. Photonics 7, 53 (2013) [CrossRef] [Google Scholar]
  27. S. Huang, C. Song, G. Zhang, H. Yan, Graphene plasmonics: physics and potential applications, Nanophotonics 6, 1191 (2017) [CrossRef] [Google Scholar]
  28. Y. Fan, N.H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, C.M. Soukoulis, Graphene plasmonics: a platform for 2D optics, Adv. Opt. Mater. 7, 1800537 (2019) [CrossRef] [Google Scholar]
  29. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, F. Xia, Damping pathways of mid-infrared plasmons in graphene nanostructures, Nat. Photonics 7, 394 (2013) [CrossRef] [Google Scholar]
  30. Y. Fan, N.-H. Shen, T. Koschny, C.M. Soukoulis, Tunable terahertz meta-surface with graphene cut-wires, ACS Photonics 2, 151 (2015) [CrossRef] [Google Scholar]
  31. F.J. Bezares, A. De Sanctis, J.R.M. Saavedra, A. Woessner, P. Alonso-Gonzalez, T. Amenabar, J. Chen, T.H. Bointon, S. Dai, M.M. Fogler, D.N. Basov, R. Hillenbrand, M.F. Craciun, F.J. Garcia de Abajo, S. Russo, F.H.L. Koppens, Intrinsic plasmon-phonon interactions in highly doped graphene: a near-field imaging study, Nano Lett. 17, 5908 (2017) [CrossRef] [Google Scholar]
  32. S.H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H.K. Choi, S.S. Lee, C.-G. Choi, S.-Y. Choi, Switching terahertz waves with gate-controlled active graphene metamaterials, Nat. Mater. 11, 936 (2012) [CrossRef] [PubMed] [Google Scholar]
  33. B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M.M. Kelly, D. Jena, Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators, Nano Lett. 12, 4518 (2012) [CrossRef] [Google Scholar]
  34. P.-Y. Chen, J. Soric, Y.R. Padooru, H.M. Bernety, A.B. Yakovlev, A. Alu, Nanostructured graphene metasurface for tunable terahertz cloaking, New J. Phys. 15, 123029 (2013) [CrossRef] [Google Scholar]
  35. H. Nasari, M.S. Abrishamian, Magnetically tunable focusing in a graded index planar lens based on graphene, J. Opt. 16, 105502 (2014) [CrossRef] [Google Scholar]
  36. B. Wu, H.M. Tuncer, A. Katsounaros, W. Wu, M.T. Cole, K. Ying, L. Zhang, W.I. Milne, Y. Hao, Microwave absorption and radiation from large-area multilayer CVD graphene, Carbon 77, 814 (2014) [CrossRef] [Google Scholar]
  37. O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces, Nat. Commun. 6, 6628 (2015) [Google Scholar]
  38. N. Kakenov, O. Balci, E.O. Polat, H. Altan, C. Kocabas, Broadband terahertz modulators using self-gated graphene capacitors, JOSA B 32, 1861 (2015) [CrossRef] [Google Scholar]
  39. N. Kakenov, O. Balci, T. Takan, V.A. Ozkan, H. Altan, C. Kocabas, Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene, ACS Photonics 3, 1531 (2016) [CrossRef] [Google Scholar]
  40. Y. Fan, L. Tu, F. Zhang, Q. Fu, Z. Zhang, Z. Wei, H. Li, Broadband terahertz absorption in graphene-embedded photonic crystals, Plasmonics 13, 1153 (2018) [CrossRef] [Google Scholar]
  41. N. Kakenov, M.S. Ergoktas, O. Balci, C. Kocabas, Graphene based terahertz phase modulators, 2D Mater. 5, 035018 (2018) [CrossRef] [Google Scholar]
  42. Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, Ultrafast terahertz frequency and phase tuning by all‐optical molecularization of metasurfaces, Adv. Opt. Mater. 7, 1901050 (2019) [CrossRef] [Google Scholar]
  43. L. Liu, W. Liu, Z. Song, Ultra-broadband terahertz absorber based on a multilayer graphene metamaterial, J. Appl. Phys. 128, 093104 (2020) [CrossRef] [Google Scholar]
  44. M. Zhang, Z. Song, Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration, Opt. Express 28, 11780 (2020) [CrossRef] [Google Scholar]
  45. O. Balci, N. Kakenov, C. Kocabas, Controlling phase of microwaves with active graphene surfaces, Appl. Phys. Lett. 110, 161102 (2017) [CrossRef] [Google Scholar]
  46. J. Zhang, H. Zhang, W. Yang, K. Chen, X. Wei, Y. Feng, R. Jin, W. Zhu, Dynamic scattering steering with graphene-based coding metamirror, Adv. Opt. Mater. 8, 2000683 (2020) [CrossRef] [Google Scholar]
  47. L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen, Theory of extraordinary optical transmission through subwavelength hole arrays, Phys. Rev. Lett. 86, 1114 (2001) [CrossRef] [PubMed] [Google Scholar]
  48. C. Genet, T. W. Ebbesen, Light in tiny holes, Nature 445, 39–46 (2007) [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  49. H. Liu, P. Lalanne, Microscopic theory of the extraordinary optical transmission, Nature 452, 728 (2008) [CrossRef] [Google Scholar]
  50. K. Aydin, A.O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, E. Ozbay, Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture, Phys. Rev. Lett. 102, 013904 (2009) [CrossRef] [Google Scholar]
  51. V. Gusynin, S. Sharapov, J. Carbotte, Magneto-optical conductivity in graphene, J. Phys.: Condens. Matter 19, 026222 (2006) [CrossRef] [Google Scholar]
  52. G.W. Hanson, Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene, J. Appl. Phys. 103, 064302 (2008) [CrossRef] [Google Scholar]
  53. G.W. Hanson, Dyadic Green's functions for an anisotropic, non-local model of biased graphene, IEEE Trans. Antennas Propag. 56, 747 (2008) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.