Issue
EPJ Appl. Metamat.
Volume 7, 2020
Frontiers in microwave, photonic, and mechanical metamaterials
Article Number 10
Number of page(s) 9
DOI https://doi.org/10.1051/epjam/2020009
Published online 19 January 2021
  1. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, N. Engheta, Performing mathematical operations with metamaterials, Science 343, 160 (2014) [Google Scholar]
  2. M. Moccia, G. Castaldi, G. D'Alterio, M. Feo, R. Vitiello, V. Galdi, Transformation-optics-based design of a metamaterial radome for extending the scanning angle of a phased-array antenna, IEEE J. Multiscale Multiphys. Comput. Tech. 2, 159 (2017) [Google Scholar]
  3. H. Tao, W.J. Padilla, X. Zhang, R.D. Averitt, Recent progress in electromagnetic metamaterial devices for terahertz applications, IEEE J. Sel. Top. Quantum Electron. 17, 92 (2010) [Google Scholar]
  4. F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, G. Schettini, Radiation enhancement properties of an X-band woodpile EBG and its application to a planar antenna, Int. J. Antennas Propag. 2014, 1 (2014) [Google Scholar]
  5. A.R. Weily, K.P. Esselle, T.S. Bird, B.C. Sanders, Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies, Electron. Lett. 42, 3 (2006) [Google Scholar]
  6. G. Torrisi et al., Numerical study of photonic-crystal-based dielectric accelerators, in Proceedings of 10th International Particle Accelerator Conference (IPAC), Melbourne, VIC, Australia, 2019, JACOW, Geneva, Switzerland, pp. 3653 [Google Scholar]
  7. F. Yang, Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, ser. Cambridge books online (Cambridge University Press, 2008) [Google Scholar]
  8. L. Crocco, F. Cuomo, T. Isernia, Improved scattering matrix method for the analysis of two-dimensional PBG devices, Microw. Opt. Technol. Lett. 48, 2564 (2006) [Google Scholar]
  9. C.M. Reinke, M. Teofilo, M.F. Su, M.B. Sinclair, I. El-Kady, Group-theory approach to tailored electromagnetic properties of metamaterials: an inverse-problem solution, Phys. Rev. E 83, 066603 (2011) [Google Scholar]
  10. Y. El-Kahlout, G. Kiziltas, Inverse synthesis of electromagnetic materials using homogenization based topology optimization, Prog. Electromagn. Res. 115, 343 (2011) [Google Scholar]
  11. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E 71, 036617 (2005) [Google Scholar]
  12. M.P. Bendsoe, O. Sigmund, Topology optimization: theory, methods, and applications (Springer Science & Business Media, 2013) [Google Scholar]
  13. L.H. Frandsen, A. Harpøth, P.I. Borel, M. Kristensen, J.S. Jensen, O. Sigmund, Broadband photonic crystal waveguide 60 bend obtained utilizing topology optimization, Opt. Express 12, 5916 (2004) [Google Scholar]
  14. J.S. Jensen, O. Sigmund, Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends, Appl. Phys. Lett. 84, 2022 (2004) [Google Scholar]
  15. J.S. Jensen, O. Sigmund, Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide, JOSA B 22, 1191 (2005) [Google Scholar]
  16. J.S. Jensen, O. Sigmund, L.H. Frandsen, P.I. Borel, A. Harpoth, M. Kristensen, Topology design and fabrication of an efficient double 90/spl deg/photonic crystal waveguide bend, IEEE Photon. Technol. Lett. 17, 1202 (2005) [Google Scholar]
  17. M. Otomori, J. Andkjaer, O. Sigmund, K. Izui, S. Nishiwaki, Inverse design of dielectric materials by topology optimization, Prog. Electromagn. Res. PIER 127, 93 (2012) [Google Scholar]
  18. F. Callewaert, V. Velev, P. Kumar, A.V. Sahakian, K. Aydin, Inverse-designed broadband all-dielectric electromagnetic metadevices, Sci. Rep. 8, 1358 (2018) [Google Scholar]
  19. J. Han, J. Huang, J. Wu, J. Yang, Inverse designed tunable four-channel wavelength demultiplexer, Opt. Commun. 465, 125606 (2020) [Google Scholar]
  20. M.H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, K. Parsons, Deep neural network inverse design of integrated photonic power splitters, Sci. Rep. 9, 1368 (2019) [Google Scholar]
  21. D. Felbacq, G. Tayeb, D. Maystre, Scattering by a random set of parallel cylinders, J. Opt. Soc. Am. A 11, 2526 (1994) [Google Scholar]
  22. R. Palmeri, M.T. Bevacqua, A.F. Morabito, T. Isernia, Design of artificial-material-based antennas using inverse scattering techniques, IEEE Trans. Antennas Propag. 66, 7076 (2018) [Google Scholar]
  23. R. Palmeri, M.T. Bevacqua, T. Iserni, Design of invisibility devices through artificial materials: further possible tools from the inverse scattering perspective, 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), IEEE, 2019, pp. X–290 [Google Scholar]
  24. R. Palmeri, T. Isernia, Volumetric invisibility cloaks design through spectral coverage optimization, IEEE Access 7, 30860 (2019) [Google Scholar]
  25. R. Palmeri, T. Isernia, Inverse design of artificial materials based lens antennas through the scattering matrix method, Electronics 9, 559 (2020) [Google Scholar]
  26. A. Hakansson, J. Sánchez-Dehesa, L. Sanchis, Inverse design of photonic crystal devices, IEEE J. Sel. Areas Commun. 23, 1365 (2005) [Google Scholar]
  27. D.S. Jones, Acoustic and electromagnetic waves (Oxford Science Publications, 1986) [Google Scholar]
  28. O.M. Bucci, T. Isernia, Electromagnetic inverse scattering: retrievable information and measurement strategies, Radio Sci. 32, 2123 (1997) [Google Scholar]
  29. M. Abramovitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.