Issue
EPJ Appl. Metamat.
Volume 11, 2024
Special Issue on ‘Metamaterials for Novel Wave Phenomena: Theory, Design and Application in Microwaves’, edited by Sander Mann and Stefano Vellucci
Article Number 12
Number of page(s) 8
DOI https://doi.org/10.1051/epjam/2024011
Published online 17 June 2024
  1. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999) [CrossRef] [Google Scholar]
  2. E. Shamonina, V.A. Kalinin, K.H. Ringhofer, L. Solymar, Magnetoinductive waves in one, two, and three dimensions, J. Appl. Phys. 92, 6252 (2002) [CrossRef] [Google Scholar]
  3. M.C.K. Wiltshire, E. Shamonina, I.R. Young, L. Solymar, Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment, Electron. Lett. 39, 215 (2003) [CrossRef] [Google Scholar]
  4. O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C.J. Stevens, G. Faulkner, D.J. Edwards, L. Solymar, Mechanism of subwavelength imaging with bilayered magnetic metamaterials: theory and experiment, J. Appl. Phys. 101, 073903 (2007) [CrossRef] [Google Scholar]
  5. E. Shamonina, V.A. Kalinin, K.H. Ringhofer, L. Solymar, Imaging, compression and Poynting vector streamlines for negative permittivity materials, Plasmonics 37, 1243 (2001) [Google Scholar]
  6. J. Yan, C.J. Stevens, E. Shamonina, A metamaterial position sensor based on magnetoinductive waves, IEEE Open J. Antennas Propag. 2, 259 (2021) [CrossRef] [Google Scholar]
  7. D. Dhayaa, A. Radkovskaya, J. Yan, G. Dima, E. O'Hara, L. Solymar, E. Shamonina, Metamaterials for sensing conductive objects using time-domain reflectometry of magnetoinductive waves, in 16th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 2022, p.125 [Google Scholar]
  8. G. Dima, A. Radkovskaya, C.J. Stevens, L. Solymar, E. Shamonina, Full-range contactless conductivity detection, in 16th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 2022, p. X128 [Google Scholar]
  9. J. Feis, L. Solymar, E. Shamonina, Wireless links via coupled topological edge states, in 16th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 2022, p. 142 [Google Scholar]
  10. J. Feis, C.J. Stevens, E. Shamonina, Wireless power transfer through asymmetric topological edge states in diatomic chains of coupled meta-atoms, Appl. Phys. Lett. 117, 134106 (2020) [CrossRef] [Google Scholar]
  11. R.R.A. Syms, E. Shamonina, L. Solymar, Magneto-inductive waveguide devices, IEE P. -Microw. Antennas Propag. 153, 111 (2006) [CrossRef] [Google Scholar]
  12. A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C.J. Stevens, G. Faulkner, D.J. Edwards, L. Solymar, Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory, IET Microw. Antennas Propag. 1, 80 (2007) [CrossRef] [Google Scholar]
  13. A. Hohenau, J.R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F.R. Aussenegg, W.L. Schaich, Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles, EPL 69, 538 (2005) [CrossRef] [EDP Sciences] [Google Scholar]
  14. J.D. Baena, J. Bonache, F. Martin, R.M. Sillero, F. Falcone, T. Lopetegi, M.A.G. Laso, J. Garcia-Garcia, I. Gil, M.F. Portillo, M. Sorolla, Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines, IEEE Trans. Microw. Theory Tech. 53, 1451 (2005) [CrossRef] [Google Scholar]
  15. M. Beruete, F. Falcone, M.J. Freire, R. Marques, J.D. Baena, Electroinductive waves in chains of complementary metamaterial elements, Plasmonics 88, 083503 (2006) [Google Scholar]
  16. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C.M. Soukoulis, E. Ozbay, Investigation of magnetic resonances for different split-ring resonator parameters and designs, New J. Phys. 7, 168 (2005) [CrossRef] [Google Scholar]
  17. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R.S. Penciu, T.F. Gundogdu, M. Kafesaki, E.N. Economou, Th. Koschny, C.M. Soukoulis, Magnetic response of split-ring resonators in the far-infrared frequency regime, Opt. Lett. 30, 1348 (2005) [CrossRef] [Google Scholar]
  18. J. Zhou, T. Koschny, M. Kafesaki, E.N. Economou, J.B. Pendry, C.M. Soukoulis, Saturation of the magnetic response of split-ring resonators at optical frequencies, Phys. Rev. Lett. 95, 223902 (2005) [CrossRef] [Google Scholar]
  19. F. Mariotte, S.A. Tretyakov, B. Sauviac, Isotropic chiral composite modeling: comparison between analytical, numerical, and experimental results, Microw. Opt. Technol. Lett. 7, 861 (1994) [CrossRef] [Google Scholar]
  20. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184 (2000) [CrossRef] [Google Scholar]
  21. R. Marques, F. Medina, R. Rafii-El-Idrissi, Role of bianisotropy in negative, permeability and left-handed metamaterials, Phys. Rev. B 65, 144440 (2002) [CrossRef] [Google Scholar]
  22. E. Shamonina, Magnetoinductive polaritons: hybrid modes of metamaterials with interelement coupling, Phys. Rev. B 85, 155146 (2012) [CrossRef] [Google Scholar]
  23. F. Hesmer, E. Tatartschuk, O. Zhuromskyy, A.A. Radkovskaya, M. Shamonin, T. Hao, C.J. Stevens, G. Faulkner, D.J. Edwards, E. Shamonina, Coupling mechanisms for split ring resonators: theory and experiment, Phys. Status Solidi B 244,1170 (2007) [CrossRef] [Google Scholar]
  24. A. Chen, A. Kodigala, T. Lepetit, B. Kante, Multipoles of even/odd split-ring resonators, Photonics 2, 883 (2015) [CrossRef] [Google Scholar]
  25. J. Yan, A. Radkovskaya, L. Solymar, C. Stevens, E. Shamonina, Switchable unidirectional waves on mono- and diatomic metamaterials, Sci. Rep. 12, 16845 (2022) [Google Scholar]
  26. E. Tatartschuk, N. Gneiding, F. Hesmer, A. Radkovskaya, E. Shamonina, Mapping inter-element coupling in metamaterials: scaling down to infrared, J. Appl. Phys. 111, 094904 (2012) [CrossRef] [Google Scholar]
  27. I. Spanos, C.J. Stevens, L. Solymar, E. Shamonina, Tailoring the dispersion characteristics in planar arrays of discrete and coalesced split ring resonators, Sci. Rep. 13, 19981 (2023) [Google Scholar]
  28. P. Petrov, A.P. Hibbins, J.R. Sambles, Near-field electromagnetic coupling between helices, J. Phys. D: Appl. Phys. 54, 445108 (2021) [CrossRef] [Google Scholar]
  29. H. Liu, D.A. Genov, D.M. Wu, Y.M. Liu, J.M. Steele, C. Sun, S.N. Zhu, X. Zhang, Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies, Phys. Rev. Lett. 97, 243902 (2006) [CrossRef] [Google Scholar]
  30. N. Liu, S. Kaiser, H. Giessen, Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules, Adv. Mater. 20, 4521 (2008) [CrossRef] [Google Scholar]
  31. I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, R. Morandotti, Conductive coupling of split ring resonators: a path to thz metamaterials with ultrasharp resonances, Phys. Rev. Lett. 112, 183903 (2014) [CrossRef] [Google Scholar]
  32. T. Zheng, Z. Xiao, M. Chen, X. Miao, X. Wang, Ultra-broadband electromagnetically induced transparency in metamaterial based on conductive coupling, Plasmonics 17, 717 (2022) [CrossRef] [Google Scholar]
  33. I. Spanos, C.J. Stevens, L. Solymar, E. Shamonina, Tunable dispersion in planar arrays of coalesced resonators, in 17th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 2023 [Google Scholar]
  34. C.J. Stevens, Y. Li, C.W.T. Chan, Forward magneto-inductive wave propagation in planar magnetically coupled capacitor grids, J. Electromagnet. Wave 29, 753 (2015) [CrossRef] [Google Scholar]
  35. Y. Li, C.W.T. Chan, C.J. Stevens, Capacitor-connected grids as one-dimensional uwb data transfer channels, in 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 2013, p. 19 [CrossRef] [Google Scholar]
  36. Y. Li, C.J. Stevens, Terminal optimization for wireless power transfer with capacitor-connected grids metamaterial waveguides, in 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 2015, p. 181 [Google Scholar]
  37. A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C.J. Stevens, D.J. Edwards, L. Solymar, Surface waves at an interface of two metamaterial structures with interelement coupling, Phys. Rev. B 82, 045430 (2010) [CrossRef] [Google Scholar]
  38. O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C.J. Stevens, G. Faulkner, D.J. Edwards, L. Solymar, Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell, Phys. Rev. B 73, 224406 (2006) [CrossRef] [Google Scholar]
  39. A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C.J. Stevens, D.J. Edwards, E. Shamonina, Dimer and polymer metamaterials with alternating electric and magnetic coupling, Phys. Rev. B 84, 125121 (2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.