Open Access
EPJ Appl. Metamat.
Volume 11, 2024
Article Number 11
Number of page(s) 18
Published online 03 May 2024
  1. U. Leonhardt, T. Philbin, Geometry and light: the science of invisibility (Courier Corporation, 2010) [Google Scholar]
  2. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312, 1780 (2006) [Google Scholar]
  3. M. Cassier, G.W. Milton, Bounds on Herglotz functions and fundamental limits of broadband passive quasistatic cloaking, J. Math. Phy, 58, 071504 (2017) [Google Scholar]
  4. J. Li, J.B. Pendry, Hiding under the carpet: a new strategy for cloaking, Phys. Rev. Lett. 101, 203901 (2008) [Google Scholar]
  5. R. Kohn, M. Vogelius, Determining conductivity by boundary measurements, Commun. Pure Appl. Math. 37, 289 (1984) [Google Scholar]
  6. J.M. Lee, G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Commun. Pure Appl. Math. 42, 1097 (1989) [Google Scholar]
  7. R.V. Kohn, H. Shen, M.S. Vogelius, M.I. Weinstein, Cloaking via change of variables in electric impedance tomography, Inverse Probl. 24, 015016 (2008) [Google Scholar]
  8. J. Sylvester, G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math. 125 153 (1987) [Google Scholar]
  9. A. Greenleaf, M. Lassas, G. Uhlmann, Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas. 24, 413 (2003) [Google Scholar]
  10. A. Alù, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005) [Google Scholar]
  11. P.-Y. Chen, J. Soric, A. Alù, Invisibility and cloaking based on scattering cancellation, Adv. Mater. 24, OP281 (2012) [Google Scholar]
  12. G.W. Milton, N.-A.P. Nicorovici, R.C. McPhedran, V.A. Podolskiy, A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance, Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 461, 3999 (2005) [Google Scholar]
  13. G.W. Milton, M. Briane, J.R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, N. J. Phys. 8, 248 (2006) [Google Scholar]
  14. M.P. Bendsøe, O. Sigmund, Material interpolation schemes in topology optimization, Arch. Appl. Mech. 69, 635 (1999) [Google Scholar]
  15. B. Vial, Y. Hao, Yang, Topology optimized all-dielectric cloak: design, performances and modal picture of the invisibility effect, Opt. Express 23, 23551 (2015) [Google Scholar]
  16. J. Andkjær, O. Sigmund, Topology optimized low-contrast all-dielectric optical cloak, Appl. Phys. Lett. 98, 021112 (2011) [Google Scholar]
  17. L. Pomot, C. Payan, M. Remillieux, S. Guenneau, Acoustic cloaking: geometric transform, homogenization and a genetic algorithm, Wave Motion 92, 102413 (2020) [Google Scholar]
  18. F.L. Teixeira, W.C. Chew, General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media, IEEE Microwave Guided Wave Lett. 8, 223 (1998) [Google Scholar]
  19. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, S. Leon-Saval, Foundations of photonic crystal fibres, 2nd ed. (Imperial College Press, 2012) [Google Scholar]
  20. E. Kuci, F. Henrotte, P. Duysinx, C. Geuzaine, Design sensitivity analysis for shape optimization based on the Lie derivative, Comput. Methods Appl. Mech. Eng. 317, 702 (2017) [Google Scholar]
  21. C. Geuzaine, ONELAB., (accessed November 14, 2022) [Google Scholar]
  22. GetDP documentation. (accessed November 14, 2022) [Google Scholar]
  23. J. Smajic, C. Hafner, D. Erni, Optimization of photonic crystal structures, J. Opt. Soc. Am. A 21, 2223 (2004) [Google Scholar]
  24. T. Ross, G. Cormier, Particle swarm optimization for ellipsometric data inversion of samples having an arbitrary number of layers, J. Opt. Soc. Am. A 27, 319 (2010) [Google Scholar]
  25. P. Zhang, Y. Qian, Q. Qian, Multi-objective optimization for materials design with improved NSGA-II, Mater. Today Commun. 28, 102709 (2021) [Google Scholar]
  26. W. Costa, H. Camporez, M. Pontes, M. Segatto, H. Rocha, J. Silva, M. Hinrichs, A. Paraskevopoulos, V. Jungnickel, R. Freund, Increasing the power and spectral efficiencies of an OFDM-based VLC system through multi-objective optimization, J. Opt. Soc. Am. A 40, 1268 (2023) [Google Scholar]
  27. N. Srinivas, K. Deb, Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evol. Comput. 2, 221 (1994) [Google Scholar]
  28. K. Deb, A. Pratap, S. Agarwal, T.A.M.T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6, 182 (2002) [Google Scholar]
  29. S. Mirjalili, S. Mohammad Mirjalili, A, Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69, 46 (2014) [Google Scholar]
  30. N. Mittal, U. Singh, B. Singh Sohi, Modified grey wolf optimizer for global engineering optimization, Appl. Comput. Intell. Soft Comput. 2016, 7950348 (2016) [Google Scholar]
  31. B. Martin, J. Marot, S. Bourennane, Mixed grey wolf optimizer for the joint denoising and unmixing of multispectral images, Appl. Soft Comput. 74, 385 (2019) [Google Scholar]
  32. F. Waschkowski, Y. Zhao, R. Sandberg, J. Klewicki, Multi-objective CFD-driven development of coupled turbulence closure models, J. Comput. Phys. 452, 110922 (2022) [Google Scholar]
  33. Y. Chen, S. Zhou, Q. Li, Multiobjective topology optimization for finite periodic structures, Comput. Struct. 88, 806 (2010) [Google Scholar]
  34. E. Emary, H.M. Zawbaa, A. Ella Hassanien, Binary grey wolf optimization approaches for feature selection, Neurocomputing 172, 371 (2016) [Google Scholar]
  35. P. Hu, J.-S. Pan, S.-C. Chu, Improved Binary Grey Wolf Optimizer and Its application for feature selection, Knowledge Based Syst. 195, 105746 (2020) [Google Scholar]
  36. M. Kadic, S. Guenneau, S. Enoch, P.A. Huidobro, L. Martin-Moreno,F.J. García-Vidal, J. Renger, R. Quidant, Transformation plasmonics, Nanophotonics 1, 51 (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.