Open Access
EPJ Appl. Metamat.
Volume 11, 2024
Article Number 13
Number of page(s) 10
Published online 03 July 2024
  1. G. Fan, K. Sun, Q. Hou, Z. Wang, Y. Liu, R. Fan, Epsilon-negative media from the viewpoint of materials science, EPJ Appl. Metamat. 8, 11 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  2. Z. Zhang, Y. Zhao, G. Fan, W. Zhang, Y. Liu, J. Liu, R. Fan, Paper-based flexible metamaterial for microwave applications, EPJ Appl. Metamat. 8, 6 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  3. J. You, C. Wang, L. Ma, S. Yin, Safe energy-storage mechanical metamaterials via architecture design, EPJ Appl. Metamat. 10, 1 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  4. T. Terao, Numerical methods for design of metamaterial photonic crystals and random metamaterials, EPJ Appl. Metamat. 9, 1 (2022) [CrossRef] [EDP Sciences] [Google Scholar]
  5. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76, 4773 (1996) [CrossRef] [Google Scholar]
  6. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory. Tech. 47, 2075 (1999) [CrossRef] [Google Scholar]
  7. G. Fan, Z. Wang, H. Ren, Y. Liu, R. Fan, Dielectric dispersion of copper/rutile cermets: Dielectric resonance, relaxation, and plasma oscillation, Scr. Mater. 190, 1 (2021) [Google Scholar]
  8. I. Luk'yanchuk, A. Sené, V.M. Vinokur, Electrodynamics of ferroelectric films with negative capacitance, Phys. Rev. B 98, 024107 (2018) [CrossRef] [Google Scholar]
  9. G. Fan, Z. Wang, K. Sun, Y. Liu, R. Fan, Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions, J. Mater. Sci. Technol. 61, 125 (2021) [Google Scholar]
  10. P. Xie, Z. Zhang, K. Liu, L. Qian, F. Dang, Y. Liu, R. Fan, X. Wang, S. Dou, C/SiO2 meta-composite: Overcoming the λ/a relationship limitation in metamaterials, Carbon 125, 1 (2017) [CrossRef] [Google Scholar]
  11. J. Du, Y. Zhao, Y. Wang, J. Ai, Y. Li, X. Hao, Enhanced energy-storage density in silver niobate ceramics by Yb3+ doping at A-site, Mater. Lett. 333, 133524 (2023) [CrossRef] [Google Scholar]
  12. B. Hu, K. Sun, J. Wang, J. Xu, B. Liu, J. Zhang, Y. Yang, B. Du, High dielectric performance of (Nb5+, Lu3+) co-doped TiO2 ceramics in a broad temperature range, Mater. Lett. 271, 127838 (2020) [Google Scholar]
  13. Q. Tang, Z. Shi, M. Han, Q. He, D. Dastan, Y. Liu, R. Fan, Layered SrTiO3/BaTiO3 composites with significantly enhanced dielectric permittivity and low loss, Ceram. Int. 49, 23326 (2023) [CrossRef] [Google Scholar]
  14. Y. Chen, R. Li, Y. Zhang, Y. Long, N. Liu, H. Xia, X. Luo, B. Meng, Preparation and dielectric properties of lead-free perovskite-structured high-entropy ceramics of (La0.25Sr0.25 Ba0.25Na0.25)(Ti0.5 Me0.5)O3-δ (Me=Sn, Zr, Hf) via doping at both A and B sites, Ceram. Int. 49, 1038 (2022) [Google Scholar]
  15. H. Luo, S. Tang, Z. Sun, Y. Zhang, Y. Yao, H. Zheng, J. Yang, Y. Ren, M. Tang, H. Huang, H. Liu, M. Hinterstein, J. Chen, Perovskite/metal (Bi0.5Na0.5TiO3-BaTiO3/Ag) lead-free composite ceramics featuring enhanced depolarization temperature, Acta Mater. 254, 119024 (2023) [CrossRef] [Google Scholar]
  16. M. Alkathy, R. Gayam, B. Hazra, K. Raju, Effect of sintering on structural and physical properties of nickel and lithium co-substituted barium titanate ceramics, Ceram. Int. 43, 7937 (2017) [Google Scholar]
  17. T. Sebastian, A. Michalek, M. Hedayati, T. Lusiola, F. Clemens, Enhancing dielectric properties of barium titanate macrofibers, J. Eur. Ceram. Soc. 39, 3176 (2019) [Google Scholar]
  18. Y. Ning, Y. Pu, C. Wu, J. Zhang, X. Zhang, Y. Shang, Achieving high energy storage performance below 200 kV/cm in BaTiO3-based medium-entropy ceramics, Ceram. Int. 49, 20326 (2023) [CrossRef] [Google Scholar]
  19. J. Wu, G. Zhao, C. Pan, K. Tao, J. Yang, X. Zhu, P. Tong, L. Yin, W. Song, Y. Sun, Lattice disorder effect on the structural, ferroelectric and electrocaloric properties of (Ba, Sr, Ca)TiO3 ceramics, J. Alloys Compd. 915, 165433 (2022) [CrossRef] [Google Scholar]
  20. Y. Wang, Z.-Y. Shen, Y.-M. Li, Z.-M. Wang, W.-Q. Luo, Y. Hong, Optimization of energy storage density and efficiency in BaxSr1−xTiO3 (x≤0.4) paraelectric ceramics, Ceram. Int. 41, 8252 (2015) [CrossRef] [Google Scholar]
  21. Z. Li, D.-X. Li, Z.-Y. Shen, X. Zeng, F. Song, W. Luo, X. Wang, Z. Wang, Y. Li, Remarkably enhanced dielectric stability and energy storage properties in BNT-BST relaxor ceramics by A-site defect engineering for pulsed power applications, J. Adv. Ceram. 11, 283 (2022) [CrossRef] [Google Scholar]
  22. Q. Yuan, M. Chen, S. Zhan, Y. Li, Y. Lin, H. Yang, Ceramic-based dielectrics for electrostatic energy storage applications: Fundamental aspects, recent progress, and remaining challenges, Chem. Eng. J. 446, 136315 (2022) [CrossRef] [Google Scholar]
  23. M.V. Talanov, A.A. Bush, V.P. Sirotinkin, V.I. Kozlov, Structural origin of strongly diffused ferroelectric phase transition in Ba(Ti, Zr)O3-based ceramics, Acta Mater. 227, 117734 (2022) [CrossRef] [Google Scholar]
  24. X. Li, Z. Shi, M. Han, Q. Tang, P. Xie, R. Fan, All-polymeric multilayer para/ferroelectric dielectric films utilizing a gradient structure toward concurrent high discharge efficiency and energy density, Mater. Today Energy 29, 101119 (2022) [CrossRef] [Google Scholar]
  25. Z.M. Cai, X.H. Wang, B.C. Luo, W. Hong, L.W. Wu, L.T. Li, Dielectric response and breakdown behavior of polymer-ceramic nanocomposites: the effect of nanoparticle distribution, Compos. Sci. Technol. 145, 105 (2017) [CrossRef] [Google Scholar]
  26. W. Hong, K.C. Pitike, Modeling breakdown-resistant composite dielectrics, Procedia IUTAM 12, 73 (2015) [CrossRef] [Google Scholar]
  27. K. Pitike, W. Hong; Phase-field model for dielectric breakdown in solids, J. Appl. Phys. 115, 044101 (2014) [CrossRef] [Google Scholar]
  28. L.-M. Wang, Q.-X. Liu, D. Zhou, Dielectric and energy storage properties of the (1−x)BaTiO3xBi(Li1/3Hf2/3)O3 (0.08 ≤ × ≤ 0.14) ceramics, Mater. Lett. 283, 128823 (2021) [CrossRef] [Google Scholar]
  29. Z. Zhao, X. Liang, T. Zhang, K. Hu, S. Li, Y. Zhang, Effects of cerium doping on dielectric properties and defect mechanism of barium strontium titanate glass-ceramics, J. Eur. Ceram. Soc. 40, 712 (2020) [CrossRef] [Google Scholar]
  30. O.M. Hemeda, B.I. Salem, H. Abdelfatah, G. Abdelsatar, M. Shihab, Dielectric and ferroelectric properties of barium zirconate titanate ceramics prepared by ceramic method, Physica B 574, 411680 (2019) [CrossRef] [Google Scholar]
  31. P.S. Padhi, S.K. Rai, H. Srivastava, R.S. Ajimsha, A.K. Srivastava, P. Misra, Maxwell-Wagner relaxation-driven high dielectric constant in Al2O3/TiO2 nanolaminates grown by pulsed laser deposition, ACS. Appl. Mater. Inter. 14, 12873 (2022) [CrossRef] [Google Scholar]
  32. I. Jalafi, A. Bendahhou, K. Chourti, F. Chaou, E. Hassan Yahakoub, S.E.L. Barkany, M. Abou-Salama, High permittivity and low dielectric loss of the (Ca0.9Sr0.1)1−xLa2x/3Cu3 Ti4O12 ceramics, Ceram. Int. 49, 10213 (2022) [Google Scholar]
  33. K.M. Sangwan, N. Ahlawat, R.S. Kundu, S. Rani, S. Rani, Structural, dielectric and ferroelectric properties of substituted BaZrTiO3 lead-free ceramics, AIP Conf. Proc. 2115, 030027 (2019) [CrossRef] [Google Scholar]
  34. D. Ji, S. Song, Y. Lyu, W. Ren, L. Li, B. Yang, M. Zhang, Novel Fabrication of Basalt Nanosheets with Ultrahigh Aspect Ratios Toward Enhanced Mechanical and Dielectric Properties of Aramid Nanofiber-Based Composite Nanopapers, Adv. Sci. 2302, 371 (2023) [Google Scholar]
  35. X. Hu, H. Zhang, D. Wu, D. Yin, N. Zhu, K. Guo, C. Lu, PVDF-based matrix with covalent bonded BaTiO3 nanowires enabled ultrahigh energy density and dielectric properties, Chem. Eng. J. 451, 1385 (2023) [Google Scholar]
  36. J. Yan, H. Huang, J. Tong, W. Li, X. Liu, H. Zhang, H. Huang, W. Zhou, Recent progress on the modification of high nickel content NCM: Coating, doping, and single crystallization, Interdiscip. Mater. 1, 330 (2022) [CrossRef] [Google Scholar]
  37. B. Zhang, L. Ren, Y. Wang, X. Xu, Y. Du, S. Dou. Gallium-based liquid metals for lithium-ion batteries, Interdiscip. Mater. 1, 354 (2022) [Google Scholar]
  38. X. Wang, Z. Gu, E.H. Ang, X. Zhao, X. Wu, Y. Liu. Prospects for managing end-of-life lithium-ion batteries: present and future, Interdiscip. Mater. 1, 417 (2022) [CrossRef] [Google Scholar]
  39. G. Wang, Y. Liang, H. Liu, C. Wang, D. Li, L. Fan, Scalable, thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries, Interdiscip. Mater. 1, 434 (2022) [CrossRef] [Google Scholar]
  40. F. Wang, X. Liao, H. Wang, Y. Zhao, J. Mao, D.G. Truhlar, Bioinspired mechanically interlocking holey graphene@SiO2 anode. Interdiscip. Mater. 1, 517 (2022) [Google Scholar]
  41. S. Xia, Z. Shi, K. Sun, P. Yin, D. Dastan, Y. Liu, H. Cui, R. Fan, Achieving remarkable energy storage enhancement in polymer dielectrics via constructing an ultrathin Coulomb blockade layer of gold nanoparticles, Mater. Horiz. 10, 2476 (2023) [CrossRef] [Google Scholar]
  42. P. Wang, D. Jing Li, L. Pang, W. Liu, J. Su, C. Singh, S. Trukhanov, A. Trukhanov, Significantly enhanced electrostatic energy storage performance of P(VDF-HFP)/BaTiO3-Bi(Li0.5 Nb0.5)O3 nanocomposites, Nano Energy 78, 105247 (2020) [CrossRef] [Google Scholar]
  43. C Yin, T Zhang, B Zhang, C Zhang, Q Chi, High energy storage performance for flexible PbZrO3 thin films by seed layer engineering, Ceram. Int. 48, 23840 (2022) [CrossRef] [Google Scholar]
  44. C. Yin, T. Zhang, Z. Shi, C. Zhang, Y. Feng, Q. Chi, High energy storage performance of all-inorganic flexible antiferroelectric-insulator multilayered thin films, ACS Appl. Mater. Interfaces 14, 28997 (2022) [CrossRef] [Google Scholar]
  45. H. Du, Z. Shi, Q. Hou, S. Xia, P. Yin, D. Dastan, H. Cui, R. Fan, Gold sputtering at the interfaces: an easily operated strategy for enhancing the energy storage capability of laminated polymer dielectrics, ACS Appl. Mater. Inter. 15, 17103 (2023) [CrossRef] [Google Scholar]
  46. H. Li, D. Ai, L. Ren, B. Yao, Z. Han, Z. Shen, J. Wang, L. Chen, Q. Wang, Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers, Adv. Mater. 31, 1900875 (2019) [CrossRef] [Google Scholar]
  47. H. Li, D. Ai, L. Ren, B. Yao, Z. Han, Z. Shen, J. Wang, L. Chen, Q. Wang, High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core-shell nanostructured nanofillers, Adv. Energy Mater. 11, 2101297 (2021) [CrossRef] [Google Scholar]
  48. L. Guan, L. Weng, Q. Li, X. Zhang, Z. Wu, Y. Ma, Design and preparation of ultra-thin 2D Ag-NiMOF ferroelectric nanoplatelets for PVDF based dielectric composites, Mater. Des. 197, 109241 (2021) [CrossRef] [Google Scholar]
  49. P. Pulphol, N. Vittayakorn, W. Vittayakorn, T. Kolodiazhnyi, Dielectric relaxation behavior of BaZrO3 ceramics at low temperature, Ceram. Int. 46, 24488 (2023) [Google Scholar]
  50. P.S. Padhi, S.K. Rai, H. Srivastava, R.S. Ajimsha, A.K. Srivastava, P. Misra, Maxwell-Wagner relaxation-driven high dielectric constant in Al2O3/TiO2 nanolaminates grown by pulsed laser deposition, ACS Appl. Mater. Inter. 14, 12873 (2022) [CrossRef] [Google Scholar]
  51. I. Jalafi, A. Bendahhou, K. Chourti, F. Chaou, E. Hassan Yahakoub, S.E.L. Barkany, M. Abou-Salama, High permittivity and low dielectric loss of the (Ca0.9Sr0.1)1-xLa2x/3 Cu3Ti4O12 ceramics, Ceram. Int. 49, 10213 (2022) [Google Scholar]
  52. B. Luo, Z. Shen, Z. Cai, E. Tian, Y. Yao, B. Li, A. Kursumovic, J. Driscoll, L. Li, L. Chen, X. Wang, Superhierarchical inorganic/organic nanocomposites exhibiting simultaneous ultrahigh dielectric energy density and high efficiency, Adv. Funct. Mater. 31, 2007994 (2021) [CrossRef] [Google Scholar]
  53. Y. Jiang, Z. Luo, Y. Huang, M. Shen, H. Huang, S. Jiang, Y. He, Q. Zhang, Simultaneously increased discharged energy density and efficiency in bilayer-structured nanocomposites with AgNbO3 lead-free antiferroelectric nanofillers, J. Mater. Chem. A. 10, 18950 (2023) [Google Scholar]
  54. S. Sun, Z. Shi, L. Sun, L. Liang, D. Dastan, B. He, H. Wang, M. Huang, R. Fan, Achieving concurrent high energy density and efficiency in all-polymer layered paraelectric/ferroelectric composites via introducing a moderate layer, ACS Appl. Mater. Inter. 13, 27522 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.