EPJ Appl. Metamat.
Volume 9, 2022
Metamaterials for Novel Wave Phenomena in Microwaves, Optics, and Mechanics
Article Number 11
Number of page(s) 7
Published online 17 June 2022
  1. E. Smith, G. Dent, Modern Raman Spectroscopy: A Practical Approach (John Wiley & Sons, 2019) [Google Scholar]
  2. P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Surface-enhanced Raman spectroscopy, Annu. Rev. Anal. Chem. 1, 601 (2008) [CrossRef] [Google Scholar]
  3. J.B. Jackson, N.J. Halas, Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates, Proc. Natl. Acad. Sci. 101, 17930 (2004) [CrossRef] [Google Scholar]
  4. E.J. Blackie, E.C. Le Ru, P.G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules, J. Am. Chem. Soc. 131, 14466 (2009) [CrossRef] [Google Scholar]
  5. R. Zhang et al., Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 498, 82 (2013) [CrossRef] [Google Scholar]
  6. E.C. Le Ru, P.G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 63, 65 (2012) [CrossRef] [Google Scholar]
  7. C. Chen, N. Hayazawa, S. Kawata, A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient, Nat. Commun. 5, 1 (2014) [Google Scholar]
  8. S. Jiang et al., Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering, Nat. Nanotechnol. 10, 865 (2015) [CrossRef] [Google Scholar]
  9. F. Benz et al., Single-molecule optomechanics in ‘picocavities,’ Science 354, 726 (2016) [CrossRef] [Google Scholar]
  10. C. Zong et al., Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity, Nat. Commun. 10, 5318 (2019) [CrossRef] [Google Scholar]
  11. R. Begley, A. Harvey, R.L. Byer, Coherent anti-Stokes Raman spectroscopy, Appl. Phys. Lett. 25, 387 (1974) [CrossRef] [Google Scholar]
  12. M.D. Duncan, J. Reintjes, T. Manuccia, Scanning coherent anti-Stokes Raman microscope, Opt. Lett. 7, 350 (1982) [CrossRef] [Google Scholar]
  13. A. Zumbusch, G.R. Holtom, X.S. Xie, Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering, Phys. Rev. Lett. 82, 4142 (1999) [CrossRef] [Google Scholar]
  14. S. Lal, N.K. Grady, J. Kundu, C.S. Levin, J.B. Lassiter, N.J. Halas, Tailoring plasmonic substrates for surface enhanced spectroscopies, Chem. Soc. Rev. 37, 898 (2008) [CrossRef] [Google Scholar]
  15. C. Steuwe, C.F. Kaminski, J.J. Baumberg, S. Mahajan, Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces, Nano Lett. 11, 5339 (2011) [CrossRef] [Google Scholar]
  16. Y. Zhang, Y.-R. Zhen, O. Neumann, J.K. Day, P. Nordlander, N.J. Halas, Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance, Nat. Commun. 5, 4424 (2014) [CrossRef] [Google Scholar]
  17. S. Yampolsky et al., Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering, Nat. Photonics 8, 650 (2014) [CrossRef] [Google Scholar]
  18. J. He, C. Fan, P. Ding, S. Zhu, E. Liang, Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements, Sci. Rep. 6, 20777 (2016) [CrossRef] [Google Scholar]
  19. J. Wang et al., Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-Stokes Raman scattering, Opt. Express 25, 497 (2017) [CrossRef] [Google Scholar]
  20. D.M. Nguyen, D. Lee, J. Rho, Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths, Sci. Rep. 7, 2611 (2017) [CrossRef] [Google Scholar]
  21. S. Zhang, Y. Wang, S. Wang, W. Zheng, Wavelength-tunable perfect absorber based on guided-mode resonances, Appl. Opt. 55, 3176 (2016) [CrossRef] [Google Scholar]
  22. E. Kirubha, P. Palanisamy, Green synthesis, characterization of Au–Ag core–shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies, Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 045006 (2014) [CrossRef] [Google Scholar]
  23. S. Shim, C.M. Stuart, R.A. Mathies, Resonance Raman cross-sections and vibronic analysis of Rhodamine 6G from broadband stimulated Raman spectroscopy, ChemPhysChem 9, 697 (2008) [CrossRef] [Google Scholar]
  24. C. Tan, Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy, J. Non-Cryst. Solids 223, 158 (1998) [CrossRef] [Google Scholar]
  25. D.P. Edward, I. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985) [Google Scholar]
  26. G. Tejeda, B. Maté, S. Montero, Overtone Raman spectrum and molecular polarizability surface of CO2 , J. Chem. Phys. 103, 568 (1995) [CrossRef] [Google Scholar]
  27. O. Lyandres, J.M. Yuen, N.C. Shah, R.P. VanDuyne, J.T. Walsh Jr, M.R. Glucksberg, Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor, Diabetes Technol. Ther. 10, 257 (2008) [CrossRef] [Google Scholar]
  28. M. Asano et al., Distillation of photon entanglement using a plasmonic metamaterial, Sci. Rep. 5, 18313 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.