Issue
EPJ Appl. Metamat.
Volume 9, 2022
Metamaterials for Novel Wave Phenomena in Microwaves, Optics, and Mechanics
Article Number 10
Number of page(s) 11
DOI https://doi.org/10.1051/epjam/2022008
Published online 16 June 2022
  1. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and µ, Sov. Phys. Usp. 10, 509 (1968) [CrossRef] [Google Scholar]
  2. U. Leonhardt, D. Smith, Focus on cloaking and transformation optics, New J. Phys. 10, 115019 (2008) [CrossRef] [Google Scholar]
  3. J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966 (2000) [CrossRef] [Google Scholar]
  4. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312, 1780 (2006) [Google Scholar]
  5. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index, Nature 455, 376 (2008) [CrossRef] [Google Scholar]
  6. V. Drachev, V.A. Podolskiy, A.V. Kildishev, Hyperbolic metamaterials: new physics behind a classical problem, Opt. Express 21, 15048 (2013) [CrossRef] [Google Scholar]
  7. S. Vellucci, A. Monti, M. Barbuto, A. Toscano, F. Bilotti, Progress and perspective on advanced cloacking metasurfaces, EPJ Appl. Metamat. 8, 7 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  8. R. Zivieri, Magnetic matter spin waves with “negative” group velocity, in 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials) (2015), pp. 529–531 [CrossRef] [Google Scholar]
  9. R. Zivieri, Dynamic negative permeability in a lossless ferromagnetic medium, in 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials) (2015), pp. 532–534 [CrossRef] [Google Scholar]
  10. R. Zivieri, Dynamic permeability in a dissipative ferromagnetic medium, in 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials) (2016), pp. 427–429 [CrossRef] [Google Scholar]
  11. M. Lapine, I.V. Shadrivov, Yu S. Kishvar, Colloquium: Nonlinear metamaterials, Rev. Mod. Phys. 86, 1093 (2014) [CrossRef] [Google Scholar]
  12. Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Locally resonant sonic materials, Science 289, 1734 (2000) [CrossRef] [Google Scholar]
  13. P. Sheng, X.X. Zhang, Z. Liu, C.T. Chan, Locally resonant sonic materials, Physica B 338, 201 (2003) [CrossRef] [Google Scholar]
  14. M. Hirsekorn, Small-size sonic crystals with strong attenuation bands in the audible frequency range, Appl. Phys. Lett. 84, 3364 (2004) [CrossRef] [Google Scholar]
  15. J. Li, C.T. Chan, Double-negative acoustic metamaterial, Phys. Rev. E 70, 055602 (2004) [CrossRef] [Google Scholar]
  16. N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, Ultrasonic metamaterials with negative modulus, Nat. Mater. 5, 452 (2006) [CrossRef] [Google Scholar]
  17. C.T. Chan, J. Li, K.H. Fung, On extending the concept of double negativity to acoustic waves, J. Zhejiang Univ. Sci. A 7, 24 (2006) [CrossRef] [Google Scholar]
  18. Y. Ding, Z. Liu, C. Qiu, J. Shi, Metamaterial with simultaneously negative bulk modulus and mass density, Phys. Rev. Lett. 99, 093904 (2007) [CrossRef] [Google Scholar]
  19. Y. Cheng, J.Y. Xu, X.J. Liu, One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus, Phys. Rev. B 77, 045134 (2008) [CrossRef] [Google Scholar]
  20. G.W. Milton, J.R. Willis, On modifications of Newton’s second law and linear continuum elastodynamics, Proc. R. Soc. A 463, 855 (2007) [CrossRef] [Google Scholar]
  21. S. Yao, X. Zhou, G. Hu, Experimental study on negative effective mass in a 1D mass-spring system, New. J. Phys. 10, 043020 (2008) [CrossRef] [Google Scholar]
  22. H.H. Huang, C.T. Sun, G.L. Huang, On the negative effective mass density in acoustic metamaterials, Int. J. Eng. Sci. 47, 610 (2009) [CrossRef] [Google Scholar]
  23. Z.Y. Liu, C.T. Chan, P. Sheng, Analytic model of phononic crystals with local resonances, Phys. Rev. B 71, 014103 (2005) [CrossRef] [Google Scholar]
  24. S.A. Cummer, D. Schurig, One path to acoustic cloaking, New J. Phys. 9, 45 (2007) [CrossRef] [Google Scholar]
  25. L.W. Cai, S. Sánchez-Dehesa, Acoustic cloaking in two dimensions: a feasible approach, New J. Phys. 9, 450 (2007) [CrossRef] [Google Scholar]
  26. H.Y. Chen, C.T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials, Appl. Phys. Lett. 91, 183518 (2007) [CrossRef] [Google Scholar]
  27. O. Casablanca, G. Ventura, F. Garescì, B. Azzerboni, B. Chiaia, M. Chiappini, G. Finocchio, Seismic isolation of buildings using composite foundations based on metamaterials, J. Appl. Phys. 123, 174903 (2018) [CrossRef] [Google Scholar]
  28. M. Miniaci, A. Krushynska, F. Bosia, N.M. Pugno, Large scale mechanical metamaterials as seismic shields, New J. Phys. 18, 083041 (2016) [CrossRef] [Google Scholar]
  29. A. Palermo, S. Krödel, K.H. Matlack, R. Zaccherini, V.K. Dertimanis, E.N. Chatzi, A. Marzani, C. Daraio, Hybridization of guided surface acoustic modes in unconsolidated granular media by a resonant metasurface, Phys. Rev. Appl. 9, 54026 (2018) [CrossRef] [Google Scholar]
  30. A. Colombi, D. Colquitt, P. Roux, S. Guenneau, R.V. Craster, A seismic metamaterial: the resonant metawedge, Sci. Rep. 6, 27717 (2016) [CrossRef] [Google Scholar]
  31. S. Brûlé, E.H. Javelaud, S. Enoch, S. Guenneau, Experiments on seismic metamaterials: molding surface waves, Phys. Rev. Lett. 112, 133901 (2014) [CrossRef] [Google Scholar]
  32. P.A. Johnson, Nonlinear acoustic/seismic waves in earthquake processes, in AIP Conf. Proc. 1474 (AIP Press, Tokyo, Japan, 2012), pp. 39–46 [Google Scholar]
  33. E. Fermi, J. Pasta, S. Ulam, Studies of Nonlinear Problems, Collected Papers II, University of Chicago Press, Chicago, IL, pp. 977–88 Document LA-1940 (1955) [Google Scholar]
  34. A. Tsurui, Wave modulations in anharmonic lattices, Progress Theor. Phys. 48, 1196 (1972) [CrossRef] [Google Scholar]
  35. X. Fang, J. Wen, B. Bonello, J. Yin, D. Yu, Wave propagation in one-dimensional nonlinear acoustic metamaterials, New J. Phys. 19, 053007 (2017) [CrossRef] [Google Scholar]
  36. L. Brillouin, Wave Propagation in Periodic Structures (Dover, New York, NY), 1953 [Google Scholar]
  37. R. Zivieri, F. Garescì, B. Azzerboni, M. Chiappini, G. Finocchio, Nonlinear dispersion relation in anharmonic periodic mass-spring and mass-in-mass systems, J. Sound Vib. 462, 114729 (2019) [Google Scholar]
  38. S. Fiore, G, Finocchio, R. Zivieri, M. Chiappini, F. Garescì, Wave amplitude decay driven by anharmonic potential in nonlinear mass-in-mass systems, Appl. Phys. Lett. 117, 124101 (2020) [CrossRef] [Google Scholar]
  39. R. Zivieri, G. Santoro, V. Bortolani, Multiphonon effects in the one-phonon cross section of Al, Phys. Rev. B 58, 5429 (1998) [CrossRef] [Google Scholar]
  40. R. Zivieri, Dynamical properties of a periodic mass-spring nonlinear seismic metamaterial, in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (2020), pp. 012–014 [CrossRef] [Google Scholar]
  41. R. Zivieri, Negative effective mass and stop band of nonlinear periodic seismic metamaterials, in 2021 Fifteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (2021), pp. 481–483 [CrossRef] [Google Scholar]
  42. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Saunders, 1976) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.