EPJ Appl. Metamat.
Volume 9, 2022
Metamaterials for Novel Wave Phenomena in Microwaves, Optics, and Mechanics
Article Number 12
Number of page(s) 6
Published online 24 June 2022
  1. S. Raza, S.I. Bozhevolnyi, M. Wubs et al., Nonlocal optical response in metallic nanostructures, J. Phys.: Condens. Matter 27, 183204 (2015) [CrossRef] [Google Scholar]
  2. T. Christensen, W. Yan, S. Raza et al., Nonlocal response of metallic nanospheres probed by light electrons, and atoms, ACS Nano 8, 1745 (2014) [CrossRef] [Google Scholar]
  3. B. Gallinet, J. Butet, O.J.F. Martin, Numerical methods for nanophotonics: standard problems and future challenges, Laser Photonics Rev. 9, 577 (2015) [CrossRef] [Google Scholar]
  4. J.I. Dadap, J. Shan, T.F. Heinz, Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit, J. Opt. Soc. Am B 21, 1328 (2004) [CrossRef] [Google Scholar]
  5. A.V. Krasavin, P. Ginzburg, A.V. Zayats, Free-electron optical nonlinearities in plasmonic nanostructures: a review of the hydrodynamic description, Laser Photonics Rev. 12, 1700082 (2018) [CrossRef] [Google Scholar]
  6. M.A. Gorlach, T.A. Voytova, M. Lapine et al., Nonlocal homogenization for nonlinear metamaterials, Phys. Rev. B 93, 165125 (2016) [CrossRef] [Google Scholar]
  7. L. Carletti, A. Locatelli, O. Stepanenko et al., Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas, Opt. Express 23, 26544 (2015) [CrossRef] [Google Scholar]
  8. M. Celebrano, X. Wu, M. Baselli et al., Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation, Nat. Nanotechnol. 10, 412 (2015) [CrossRef] [Google Scholar]
  9. B.-L. Wang, R. Wang, R.J. Liu et al., Origin of shape resonance in second-harmonic generation from metallic nanohole arrays, Sci. Rep. 3, 2358 (2013) [CrossRef] [Google Scholar]
  10. S. Roke, M. Bonn, A.V. Petukhov, Nonlinear optical scattering: the concept of effective susceptibility, Phys. Rev. B 70, 115106 (2004) [CrossRef] [Google Scholar]
  11. K. O’Brien, H. Suchowski, J. Rho et al., Predicting nonlinear properties of metamaterials from the linear response, Nat. Mater. 14, 379 (2015) [CrossRef] [Google Scholar]
  12. J. Butet, O.J.F. Martin, Evaluation of the nonlinear response of plasmonic metasurfaces: Miller’s rule, nonlinear effective susceptibility method, and full-wave computation, J. Optic. Soc. Am. B 33, A8 (2016) [CrossRef] [Google Scholar]
  13. A. Noor, A.R. Damodaran, I.-H. Lee et al., Mode-matching enhancement of second-harmonic generation with plasmonic nanopatch antennas ACS, Photonics 7, 3333 (2020) [CrossRef] [Google Scholar]
  14. D. Krause, C.W. Teplin, C.T. Rogers et al., Optical surface second harmonic measurements of isotropic thin-film metals: gold silver, copper, aluminum, and tantalum, J. Appl. Phys. 96, 3626 (2004) [Google Scholar]
  15. B. Wang, T. Koschny, C.M. Soukoulis, Wide-angle and polarization-independent chiral metamaterial absorber, Phys. Rev. B 80, 033108 (2009) [CrossRef] [Google Scholar]
  16. G. Bachelier, J. Butet, I. Russier-Antoine et al., Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions, Phys. Rev. B 82, 235403 (2010) [CrossRef] [Google Scholar]
  17. Y.B. Habibullah, T. Ishihara, Comparison of second harmonic generation from cross-polarized double-resonant metasurfaces on single crystals of Au, Nanophotonics 11, 1931 (2022) [Google Scholar]
  18. P.B. Johnson, R.W. Christy, Optical constants of the noble metals, Phys. Rev. B 6, 4370 (1972) [CrossRef] [Google Scholar]
  19. B.K. Canfield, H. Husu, J. Laukkanen et al., Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers, Nano Lett. 7, 1251 (2007) [CrossRef] [Google Scholar]
  20. V.K. Valev, X. Zheng, C.G. Biris et al., The origin of second harmonic generation hotspots in chiral optical metamaterials [Invited], Optic. Mater. Express 1, 36 (2011) [CrossRef] [Google Scholar]
  21. A. Salomon, M. Zielinski, R. Kolkowski et al., Size and shape resonances in second harmonic generation from silver nanocavities, J. Phys. Chem. C 117, 22377 (2013) [CrossRef] [Google Scholar]
  22. R. Czaplicki, J. Mäkitalo, R. Siikanen et al., Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry, Nano Lett. 15, 530 (2015) [CrossRef] [Google Scholar]
  23. R. Hou, V. Shynkar, C. Lafargue et al., Second harmonic generation from gold meta-molecules with three-fold symmetry, Phys. Chem. Chem. Phys. 18, 7956 (2016) [CrossRef] [Google Scholar]
  24. S.D. Gennaro, M. Rahmani, V. Giannini et al., The interplay of symmetry and scattering phase in second harmonic generation from gold nanoantennas, Nano Lett. 16, 5278 (2016) [CrossRef] [Google Scholar]
  25. M.A. Gorlach, D.A. Dobrykh, A.P. Slobozhanyuk et al., Nonlinear symmetry breaking in photometamaterials, Phys. Rev. B 97, 115119 (2018) [CrossRef] [Google Scholar]
  26. K.Y. Raygoza-Sánchez, I. Rocha-Mendoza, P. Segovia et al., Polarization dependence of second harmonic generation from plasmonic nanoprism arrays, Sci. Rep. 9, 11514 (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.