Issue
EPJ Appl. Metamat.
Volume 5, 2018
Terahertz metamaterials
Article Number 10
Number of page(s) 9
DOI https://doi.org/10.1051/epjam/2018006
Published online 24 October 2018
  1. D. Kajfez, P. Guillon, Dielectric Resonators (Artech House, Dedham, MA, 1986) [Google Scholar]
  2. S. Fiedziuszko, I. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. Stitzer, K. Wakino, Dielectric materials, devices, and circuits, IEEE Trans. Microw. Theory Tech. 50, 706 (2002) [CrossRef] [Google Scholar]
  3. B.-I. Popa, S.A. Cummer, Compact dielectric particles as a building block for low-loss magnetic metamaterials, Phys. Rev. Lett. 100, 207401 (2008) [CrossRef] [Google Scholar]
  4. R.D. Richtmyer, Dielectric resonators, J. Appl. Phys. 10, 391 (1939) [CrossRef] [Google Scholar]
  5. S. O’Brien, J.B. Pendry, Photonic band-gap effects and magnetic activity in dielectric composites, J. Phys.: Condens. Matter 14, 15 (2002) [Google Scholar]
  6. J.B. Pendry, D.R. Smith, Reversing light with negative refraction, Phys. Today 57, 37 (2004) [CrossRef] [Google Scholar]
  7. W.J. Padilla, D.N. Basov, D.R. Smith, Negative refractive index metamaterials, Mater. Today 9, 28 (2006) [CrossRef] [Google Scholar]
  8. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184 (2000) [CrossRef] [PubMed] [Google Scholar]
  9. R.W. Ziolkowski, Design, fabrication, and testing of double negative metamaterials, IEEE Trans Antenn Propag. 51, 1516 (2003) [CrossRef] [Google Scholar]
  10. N. Engheta, R.W. Ziolkowski, A positive future for double-negative metamaterials, IEEE Trans. Microw. Theory Tech. 53, 1535 (2005) [CrossRef] [Google Scholar]
  11. R. Liu, A. Degiron, J.J. Mock, D.R. Smith, Negative index material composed of electric and magnetic resonators, Appl. Phys. Lett. 90, 263504 (2007) [CrossRef] [Google Scholar]
  12. A. Ahmadi, H. Mosallaei, Physical configuration and performance modeling of all-dielectric metamaterials, Phys. Rev. B 77, 045104 (2008) [CrossRef] [Google Scholar]
  13. Q. Zhao, J. Zhou, F. Zhang, D. Lippens, Mie resonance-based dielectric metamaterials, Mater. Today 12, 60 (2009) [CrossRef] [Google Scholar]
  14. N. Liu, H. Liu, S. Zhu, H. Giessen, Stereometamate-rials, Nat. Photonics 3, 157 (2009) [CrossRef] [Google Scholar]
  15. S. Jahani, Z. Jacob, All-dielectric metamaterials, Nat Nano 11, 23 (2016) [CrossRef] [Google Scholar]
  16. P. Moitra, B.A. Slovick, W. Li, I.I. Kravchencko, D.P. Briggs, S. Krishnamurthy, J. Valentine, Large-scale all-dielectric metamaterial perfect reflectors, ACS Photonics 2, 692 (2015) [CrossRef] [Google Scholar]
  17. X. Liu, Q. Zhao, C. Lan, J. Zhou, Isotropic mie resonance-based metamaterial perfect absorber, Appl. Phys. Lett. 103, 031910 (2013) [CrossRef] [Google Scholar]
  18. X. Liu, K. Bi, B. Li, Q. Zhao, J. Zhou, Metamaterial perfect absorber based on artificial dielectric “atoms”, Opt. Express 24, 20454 (2016) [CrossRef] [Google Scholar]
  19. P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, J. Valentine, Realization of an all-dielectric zero-index optical metamaterial, Nat. Photon. 7, 791 (2013) [CrossRef] [Google Scholar]
  20. S. Liu, M.B. Sinclair, T.S. Mahony, Y.C. Jun, S. Cam-pione, J. Ginn, D.A. Bender, J.R. Wendt, J.F. Ihlefeld, P.G. Clem, J.B. Wright, I. Brener, Optical magnetic mirrors without metals, Optica 1, 250 (2014) [CrossRef] [Google Scholar]
  21. B. Luk'yanchuk, N.I. Zheludev, S.A. Maier, N.J. Ha-las, P. Nordlander, H. Giessen, C.T. Chong, The fano resonance in plasmonic nanostructures and metama-terials, Nat. Mater. 9, 707 (2010). [CrossRef] [PubMed] [Google Scholar]
  22. T. Lepetit, E. Akmansoy, J.-P. Ganne, J.-M. Lour-tioz, Resonance continuum coupling in high-permittivity dielectric metamaterials, Phys. Rev. B 82, 195307 (2010) [CrossRef] [Google Scholar]
  23. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, L. Li, Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite, Phys. Rev. Lett. 101, 027402 (2008) [CrossRef] [Google Scholar]
  24. T. Lepetit, E. Akmansoy, M. Pate, J.P. Ganne, Broadband negative magnetism from all-dielectric meta-material, Electron. Lett. 44, 1119 (2008) [CrossRef] [Google Scholar]
  25. I. Vendik, M. Odit, D. Kozlov, 3D isotropic metama-terial based on a regular array of resonant dielectric spherical inclusions, Metamaterials 3, 140 (2009) [CrossRef] [Google Scholar]
  26. J. Kim, A. Gopinath, Simulation of a metamaterial containing cubic high dielectric resonators, Phys. Rev. B 76, 115126 (2007) [CrossRef] [Google Scholar]
  27. T. Lepetit, E. Akmansoy, J.-P. Ganne, Experimental measurement of negative index in an all-dielectric meta-material, Appl. Phys. Lett. 95, 121101 (2009) [CrossRef] [Google Scholar]
  28. H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, P. Mounaix, Tunable terahertz metamaterials with negative permeability, Phys. Rev. B 79, 241108 (2009) [CrossRef] [Google Scholar]
  29. M.S. Wheeler, J.S. Aitchison, J.I.L. Chen, G.A. Ozin, M. Mojahedi, Infrared magnetic response in a random silicon carbide micropowder, Phys. Rev. B 79, 073103 (2009) [CrossRef] [Google Scholar]
  30. J.C. Ginn, I. Brener, D.W. Peters, J.R. Wendt, J.O. Stevens, P.F. Hines, L.I. Basilio, L.K. Warne, J.F. Ih-lefeld, P.G. Clem, M.B. Sinclair, Realizing optical magnetism from dielectric metamaterials, Phys. Rev. Lett. 108, 097402 (2012) [CrossRef] [Google Scholar]
  31. J.A. Schuller, R. Zia, T. Taubner, M.L. Brongersma, Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles, Phys. Rev. Lett. 99, 107401 (2007) [CrossRef] [PubMed] [Google Scholar]
  32. L. Shi, T.U. Tuzer, R. Fenollosa, F. Meseguer, A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities, Adv. Mater. 24, 5934 (2012) [CrossRef] [Google Scholar]
  33. N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices, Nat. Mater. 11, 917 (2012) [CrossRef] [Google Scholar]
  34. F. Gaufillet, S. Marcellin, E. Akmansoy, Dielectric metamaterial-based gradient index lens in the terahertz frequency range, IEEE J. Sel. Top. Quantum Electron. 23, 1 (2017) [CrossRef] [Google Scholar]
  35. N. Liu, H. Giessen, Coupling effects in optical meta-materials, Angew. Chem. In t. Ed. 49, 9838 (2010) [CrossRef] [Google Scholar]
  36. F. Zhang, L. Kang, Q. Zhao, J. Zhou, D. Lip-pens, Magnetic and electric coupling effects of dielectric metamaterial, New J. Phys. 14, 033031 (2012) [CrossRef] [Google Scholar]
  37. F. Zhang, V. Sadaune, L. Kang, Q. Zhao, J. Zhou, D. Lippens, Coupling effect for dielectric metamate-rial dimer, Prog. Electromagn. Res. 132, 587 (2012) [CrossRef] [Google Scholar]
  38. S. Lanneb‘ere, S. Campione, A. Aradian, M. Albani, F. Capolino, Artificial magnetism at terahertz frequencies from three-dimensional lattices of TiO2 microspheres accounting for spatial dispersion and magnetoelectric coupling, J. Opt. Soc. Am. B 31, 1078 (2014) [CrossRef] [Google Scholar]
  39. P. Albella, M.A. Poyli, M.K. Schmidt, S.A. Maier, F. Moreno, J.J. Śaenz, J. Aizpurua, Low-loss electric and magnetic field-enhanced spectroscopy with subwave-length silicon dimers, J. Phys. Chem. C 117, 13573 (2013) [CrossRef] [Google Scholar]
  40. S. Marcellin, E. Akmansoy, N, Negative index and mode coupling in all-dielectric metamaterials at terahertz frequencies, in 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials), Oxford, September 2015, pp. 4–6 [CrossRef] [Google Scholar]
  41. T. Lepetit, E. Akmansoy, J.-P. Ganne, Experimental evidence of resonant effective permittivity in a dielectric metamaterial, J. Appl. Phys. 109, 023115 (2011) [CrossRef] [Google Scholar]
  42. N. Matsumoto, T. Hosokura, K. Kageyama, H. Takagi, Y. Sakabe, M. Hangyo, Analysis of dielectric response of TiO2 in terahertz frequency region by general harmonic oscillator model, Jpn. J. Appl. Phys. 47, 7725 (2008) [CrossRef] [Google Scholar]
  43. K. Berdel, J. Rivas, P. Bolivar, P. de Maagt, H. Kurz, Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies, IEEE Trans. Microw. Theory Tech. 53, 1266 (2005) [CrossRef] [Google Scholar]
  44. R.A. Depine, A. Lakhtakia, A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity, Microw. Opt. Tech. Lett. 41, 315 (2004) [CrossRef] [Google Scholar]
  45. S.B. Cohn, Microwave bandpass filters containing high-q dielectric resonators, IEEE Trans. Microw. Theory Tech. 16, 218 (1968) [CrossRef] [Google Scholar]
  46. J. Sethares, S. Naumann, Design of microwave dielectric resonators, IEEE Trans. Microw. Theory Tech. MT14, 2 (1966) [CrossRef] [Google Scholar]
  47. X. Chen, T.M. Grzegorczyk, B.-I. Wu, J. Pacheco, J.A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials, Phys. Rev. E 70, 016608 (2004) [CrossRef] [Google Scholar]
  48. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures, Science 302, 5644 419 (2003) [CrossRef] [PubMed] [Google Scholar]
  49. H. Guo, N. Liu, L. Fu, T.P. Meyrath, T. Zentgraf, H. Schweizer, H. Giessen, Resonance hybridization in double split-ring resonator metamaterials, Opt. Express 15, 12095 (2007) [CrossRef] [Google Scholar]
  50. R. Abdeddaim, A. Ourir, J. de Rosny, Realizing a negative index metamaterial by controlling hybridization of trapped modes, Phys. Rev. B 83, 033101 (2011) [CrossRef] [Google Scholar]
  51. N.-H. Shen, L. Zhang, T. Koschny, B. Dastmalchi, M. Kafesaki, C.M. Soukoulis, Discontinuous design of negative index metamaterials based on mode hybridization, Appl. Phys. Lett. 101, 081913 (2012) [CrossRef] [Google Scholar]
  52. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Plasmon hybridization in stacked cut-wire metamaterials, Adv. Mater. 19, 3628 (2007) [CrossRef] [Google Scholar]
  53. A. Christ, O.J.F. Martin, Y. Ekinci, N.A. Gippius, S.G. Tikhodeev, Symmetry breaking in a plasmonic metamaterial at optical wavelength, Nano Lett. 8, 2171 (2008) [CrossRef] [Google Scholar]
  54. B. Kant́e, Y.-S. Park, K. O’Brien, D. Shuldman, N.D. Lanzillotti-Kimura, Z. Jing Wong, X. Yin, X. Zhang, Symmetry breaking and optical negative index of closed nanorings, Nat. Commun. 3, 1180 (2012) [CrossRef] [Google Scholar]
  55. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon hybridization in nanoparticle dimers, Nano Lett. 4, 899 (2004) [CrossRef] [Google Scholar]
  56. J. van de Groep, T. Coenen, S.A. Mann, A. Polman, Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles, Optica 3, 93 (2016) [CrossRef] [Google Scholar]
  57. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques, IEEE Trans. Instrum. Meas. 19, 377 (1970) [CrossRef] [Google Scholar]
  58. W. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies, Proc. IEEE 62, 33 (1974) [CrossRef] [Google Scholar]
  59. Z. Szabo, G.H. Park, R. Hedge, E.P. Li, A unique extraction of metamaterial parameters based on Kramers-Kronig relationship, IEEE Trans. Microw. Theory Tech. 58, 2646 (2010) [CrossRef] [Google Scholar]
  60. V. Varadan, R. Ro, Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality, IEEE Trans. Microw. Theory Tech. 55, 2224 (2007) [CrossRef] [Google Scholar]
  61. D.R. Smith, S. Schultz, P. Markǒs, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B 65, 195104 (2002) [CrossRef] [Google Scholar]
  62. T. Koschny, P. Markǒs, D.R. Smith, C.M. Souk-oulis, Resonant and antiresonant frequency dependence of the effective parameters of metamaterials, Phys. Rev. E 68, 065602 (2003) [CrossRef] [Google Scholar]
  63. D.R. Smith, D.C. Vier, T. Koschny, C.M. Souk-oulis, Electromagnetic parameter retrieval from inhomo-geneous metamaterials, Phys. Rev. E 71, 036617 (2005) [CrossRef] [Google Scholar]
  64. A. Alú, Restoring the physical meaning of metamaterial constitutive parameters, Phys. Rev. B 83, 081102 (2011) [CrossRef] [Google Scholar]
  65. C.R. Simovski, On electromagnetic characterization and homogenization of nanostructured metamaterials, J. Opt. 13, 013001 (2011) [CrossRef] [Google Scholar]
  66. R.W. Ziolkowski, Propagation in and scattering from a matched metamaterial having a zero index of refraction, Phys. Rev. E 70, 046608 (2004) [CrossRef] [Google Scholar]
  67. A. Alú, M.G. Silveirinha, A. Salandrino, N. En-gheta, Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern, Phys. Rev. B 75, 155410 (2007) [CrossRef] [Google Scholar]
  68. A. Sihvola, Metamaterials and depolarization factors, Prog. Electromagn. Res. 51, pp. 65–82, (2005) [CrossRef] [Google Scholar]
  69. W.G. Spitzer, R.C. Miller, D.A. Kleinman, L.E. Howarth, Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2, Phys. Rev. 126, 1710 (1962) [NASA ADS] [CrossRef] [Google Scholar]
  70. A.S. Barker, Temperature dependence of the transverse and longitudinal optic mode frequencies and charges in srtio3 and BaTiO3, Phys. Rev. 145, 391 (1966) [CrossRef] [Google Scholar]
  71. J. Han, F. Wan, Z. Zhu, W. Zhang, Dielectric response of soft mode in ferroelectric SrTiO3, Appl. Phys. Lett. 90, 031104 (2007) [CrossRef] [Google Scholar]
  72. N. Matsumoto, T. Fujii, K. Kageyama, H. Takagi, T. Na-gashima, M. Hangyo, Measurement of the soft-mode dispersion in SrTiO3 by terahertz time-domain spectroscopic ellipsometry, Jpn. J. Appl. Phys. 48, 09KC11 (2009) [Google Scholar]
  73. F.M.C. Gervais, B. Piriou, Temperature dependence of transverse- and longitudinal-optic modes in TiO2 (rutile), Phys. Rev. B 10, 1642 (1974) [NASA ADS] [CrossRef] [Google Scholar]
  74. T. Tsurumi, J. Li, T. Hoshina, H. Kakemoto, M. Nakada, J. Akedo, Ultrawide range dielectric spectroscopy of BaTiO3-based perovskite dielectrics, Appl. Phys. Lett. 91, 182905 (2007) [CrossRef] [Google Scholar]
  75. J. Petzelt, T. Ostapchuk, I. Gregora, I. Rychetsḱy, S. Hoffmann-Eifert, A.V. Pronin, Y. Yuzyuk, B.P. Gor-shunov, S. Kamba, V. Bovtun, J. Pokorný, M. Savinov, V. Porokhonskyy, D. Rafaja, P. Vaňek, A. Almeida, M.R. Chaves, A.A. Volkov, M. Dressel, R. Waser, Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics: evidence of polar grain boundaries, Phys. Rev. B 64, 184111 (2001) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.