Issue
EPJ Appl. Metamat.
Volume 5, 2018
Metamaterials Research and Development in Korea
Article Number 11
Number of page(s) 13
DOI https://doi.org/10.1051/epjam/2018008
Published online 11 December 2018
  1. N. Engheta, R.W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley-Interscience, New York, 2005) [Google Scholar]
  2. G.V. Eleftheriades, K.G. Balmain, Negative-refraction metamaterials (Wiley-Interscience, New York, 2005) [Google Scholar]
  3. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Uspekhi 10, 509 (1968) [Google Scholar]
  4. J.B. Pendry, J.A. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999) [Google Scholar]
  5. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184 (2000) [CrossRef] [PubMed] [Google Scholar]
  6. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292, 77 (2001) [CrossRef] [PubMed] [Google Scholar]
  7. S. Tretyakov, A. Urbas, N. Zheludev, Special issue on the history of metamaterials, J. Opt. 19, 080404 (2017) [CrossRef] [Google Scholar]
  8. A. Sihvola, Metamaterials in electromagnetics, Metamaterials 1, 2 (2007) [CrossRef] [Google Scholar]
  9. D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopoulos, E. Yablonovich, High-impedance electromagnetic surface with a forbidden frequency band, IEEE Trans. Microw. Theory Tech. 47, 2059 (1999) [Google Scholar]
  10. C.A. Balanis, M.A. Amiri, A.Y. Modi, S. Pandi, C.R. Birtcher, Applications of AMC-based impedance surfaces, EPJ Appl. Metamat. 5, 1 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  11. C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O'Hara, J. Booth, D.R. Smith, Overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag. 54, 10 (2012) [CrossRef] [Google Scholar]
  12. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science, 234, 333 (2011) [CrossRef] [PubMed] [Google Scholar]
  13. H.T. Chen, A.J. Taylor, N. Yu, A review of metasurfaces: physics and applications, Rep. Prog. Phys. 79, 076401 (2016) [CrossRef] [Google Scholar]
  14. A. Li, S. Singh, D. Sievenpiper, Metasurfaces and their applications, Nanophotonics 7, 989 (2018) [CrossRef] [Google Scholar]
  15. S. Walia, C.M. Shah, P. Gutruf, H. Nili, D.R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, S. Sriram, Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales, Appl. Phys. Rev. 2, 011303 (2015) [CrossRef] [Google Scholar]
  16. F. Ding, A. Pors, S.I. Bozhevolnyi, Gradient metasurfaces: a review of fundamentals and applications, Rep. Prog. Phys. 81, 026401 (2018) [Google Scholar]
  17. M. Chen, M. Kim, A.M.H. Wong, G.V. Eleftheriades, Huygens' metasurfaces from microwaves to optics: a review, Nanophotonics 7, 1207 (2018) [CrossRef] [Google Scholar]
  18. Y. Lee, S.J. Kim, H. Park, B. Lee, Metamaterials and metasurfaces for sensor applications, Sensors 17, 1726 (2017) [CrossRef] [Google Scholar]
  19. L. Huang, S. Zhang, T. Zentgraf, Metasurface holography: from fundamentals to applications, Nanophotonics 7, 1169 (2018) [CrossRef] [Google Scholar]
  20. N. Yu, F. Capasso, Flat optics with designer metasurfaces, Nat. Mat. 13, 139 (2014) [Google Scholar]
  21. H.H. Hsiao, C.H. Chu, D.P. Tsai, Fundamentals and applications of metasurfaces, Small Methods 1, 1600064 (2017) [CrossRef] [Google Scholar]
  22. S.B. Glybovski, S.A. Tretyakov, P.A. Belov, Y.S. Kivshar, C.R. Simovski, Metasurfaces: from microwaves to visible, Phys. Rep. 634, 1 (2016) [CrossRef] [Google Scholar]
  23. D.J. Park, S.J. Park, I. Park, Y.H. Ahn, Dielectric substrate effect on the metamaterial resonances in terahertz frequency range, Curr. Appl. Phys. 14, 570 (2014) [CrossRef] [Google Scholar]
  24. Y. Dong, T. Itoh, Metamaterial-based antennas, Proc. IEEE 100, 2271 (2012) [CrossRef] [Google Scholar]
  25. B. Ratni, E. Bochkova, G.P. Piau, A. de Lustrac, A. Lupu, S.N. Burokur, Design and engineering of metasurfaces for high-directivity antenna and sensing applications, EPJ Appl. Metamat. 3, 1 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  26. Q. Zhang, L. Si, Y. Huang, X. Lv, W. Zhu, Low-index-metamaterial for gain enhancement of planar terahertz antenna, AIP Adv. 4, 037103 (2014) [CrossRef] [Google Scholar]
  27. I. Yoo, M.F. Imani, T. Sleasman, D.R. Smith, Efficient complementary metamaterial element for waveguide-fed metasurface antennas, Opt. Express 24, 28686 (2016) [CrossRef] [Google Scholar]
  28. Y. Huang, L. Yang, J. Li, Y. Wang, G. Wen, Polarization conversing of metasurface for the application of wideband low-profile circular polarization slot antenna, Appl. Phys. Lett. 109, 054101 (2016) [CrossRef] [Google Scholar]
  29. N. Nasimuddin, Z. N. Chen, X. Qing, Bandwidth enhancement of a single-feed circularly polarized antenna using a metasurface: metamaterial-based wideband CP rectangular microstrip antenna, IEEE Antennas Propag. Mag. 58, 39 (2016) [CrossRef] [Google Scholar]
  30. F. Costa, O. Luukkonen, C. R. Simovski, A. Monorchio, S. A. Tretyakov, P. de Maagt, TE surface wave resonances on high-impedance surface based antennas: analysis and modeling, IEEE Trans. Antennas Propag. 59, 3588 (2011) [CrossRef] [Google Scholar]
  31. R. Nakamura, T. Fukusako, Broadband design of circularly polarized microstrip patch antenna using artificial ground structure with rectangular unit cells, IEEE Trans. Antennas Propag. 59, 2103 (2011) [CrossRef] [Google Scholar]
  32. S.X. Ta, I. Park, Artificial magnetic conductor based circularly polarized crossed-dipole antennas − 1. AMC-structure with grounding pins, Radio Sci. 52, 630 (2017) [CrossRef] [Google Scholar]
  33. S.X. Ta, I. Park, Artificial magnetic conductor based circularly polarized crossed-dipole antennas − 2. AMC-structure without grounding pins, Radio Sci. 52, 642 (2017) [CrossRef] [Google Scholar]
  34. A.R.I. Lamminen, A.R. Vimpari, J. Saily, UC-EBG on LTCC for 60-GHz frequency band antenna applications, IEEE Trans. Antennas Propag. 57, 2904 (2009) [CrossRef] [Google Scholar]
  35. R. Remski, Analysis of PBG surface using Ansoft HFSS, Microw. J. 43, 190 (2000) [Google Scholar]
  36. A.P. Feresidis, G. Goussetis, S. Wang, J. C. Vardaxoglou, Artificial magnetic conductor surfaces and their application to low-profile high-gain antennas, IEEE Trans. Antennas Propag. 53, 209 (2005) [CrossRef] [Google Scholar]
  37. H. Mosallaei, K. Sarabandi, Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate, IEEE Trans. Antennas Propag. 52, 2403 (2004) [CrossRef] [Google Scholar]
  38. S.X. Ta, I. Park, Dual-band operation of a circularly polarized radiator on a finite artificial magnetic conductor surface, J. Electromagn. Waves Appl. 28, 880 (2014) [CrossRef] [Google Scholar]
  39. S.X. Ta, I. Park, R.W. Ziolkowski, Crossed dipole antennas: a review, IEEE Antennas Propag. Mag. 57, 107 (2015) [Google Scholar]
  40. H. Huang, Y. Liu, S. Zhang, S. Gong, Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications, IEEE Antennas Wireless Propag. Lett. 14, 662 (2015) [CrossRef] [Google Scholar]
  41. S.X. Ta, I. Park, R.W. Ziolkowski, Circularly polarized crossed dipole on an HIS for 2.4/5.2/5.8-GHz WLAN applications, IEEE Antennas Wireless Propag. Lett. 12, 1464 (2013) [CrossRef] [Google Scholar]
  42. S. X. Ta, I. Park, Dual-band low-profile crossed asymmetric dipole antenna on dual-band AMC surface, IEEE Antennas Wireless Propag. Lett. 13, 587 (2014) [CrossRef] [Google Scholar]
  43. S.X. Ta, I. Park, Design of miniaturized dual-band artificial magnetic conductor with easy control of second/first resonant frequency ratio, J. Electromagn. Eng. Sci. 13, 104 (2013) [CrossRef] [Google Scholar]
  44. H.H. Tran, I. Park, A dual-wideband circularly polarized antenna using an artificial magnetic conductor, IEEE Antennas Wireless Propag. Lett. 15, 950 (2016) [CrossRef] [Google Scholar]
  45. H.H. Tran, I. Park, Wideband circularly polarized low-profile antenna using artificial magnetic conductor, J. Electromagn. Waves Appl. 30, 889 (2016) [CrossRef] [Google Scholar]
  46. K. Kandasamy, B. Majumder, J. Mukherjee, K.P. Ray, Low-RCS and polarization-reconfigurable antenna using cross-slot-based metasurface, IEEE Antennas Wireless Propag. Lett. 14, 1638 (2015) [CrossRef] [Google Scholar]
  47. K. Li, L. Li, Y. M. Cai, C. Zhu, C. H. Liang, A novel design of low-profile dual-band circularly polarized antenna with meta-surface, IEEE Antennas Wireless Propag. Lett. 14, 1650 (2015) [CrossRef] [Google Scholar]
  48. W.E.I. Liu, Z.N. Chen, X. Qing, J. Shi, F.H. Lin, Miniaturized wideband metasurface antennas, IEEE Trans. Antennas Propag. 65, 7345 (2017) [CrossRef] [Google Scholar]
  49. W. Yang, Q. Meng, W. Che, L. Gu, Q. Xue, Low-profile wideband dual-circularly polarized metasurface antenna array with large beamwidth, IEEE Antennas Wireless Propag. Lett. 17, 1613 (2018) [CrossRef] [Google Scholar]
  50. H.L. Zhu, S.W. Cheung, K.L. Chung, T.I. Yuk, Linear-to-circular polarization conversion using metasurface, IEEE Trans. Antennas Propag. 61, 4615 (2013) [CrossRef] [Google Scholar]
  51. H.L. Zhu, S.W. Cheung, X.H. Liu, T.I. Yuk, Design of polarization reconfigurable antenna using metasurface, IEEE Trans. Antennas Propag. 62, 2891 (2014) [CrossRef] [Google Scholar]
  52. S.X. Ta, I. Park, Low-profile broadband circularly polarized patch antenna using metasurface, IEEE Trans. Antennas Propag. 61, 5929 (2015) [Google Scholar]
  53. S.X. Ta, I. Park, Solar-cell metasurface-integrated circularly polarized antenna with 100% insolation, IEEE Antennas Wireless Propag. Lett. 16, 2675 (2017) [CrossRef] [Google Scholar]
  54. S.X. Ta, I. Park, Compact wideband circularly polarized patch antenna array using metasurface, IEEE Antennas Wireless Propag. Lett. 16, 1932 (2017) [CrossRef] [Google Scholar]
  55. S.X. Ta, I. Park, Planar wideband circularly polarized metasurface-based antenna array, J. Electromagn. Waves Appl. 30, 1621 (2016) [Google Scholar]
  56. G.V. Trentini, Partially reflecting sheet arrays, IRE Trans. Antennas Propag. 4, 666 (1956) [CrossRef] [Google Scholar]
  57. R.N. Clarke, C.B. Rosenberg, Fabry–Pérot and open resonators at microwave and millimetre wave frequencies, 2–300 GHz, J. Phys. E: Sci. Instrum. 15, 9 (1982) [CrossRef] [Google Scholar]
  58. Z. Liu, Fabry–Pérot resonator antenna, J. Infrared Milli. Terahz. Waves 31, 39 (2010) [Google Scholar]
  59. C.P. Huang, C.T. Chan, Deep subwavelength Fabry-Pérot resonances, EPJ Appl. Metamat. 1, 1 (2014) [CrossRef] [EDP Sciences] [Google Scholar]
  60. T.K. Nguyen, B.Q. Ta, I. Park, Design of a planar, high-gain, substrate-integrated Fabry-Pérot cavity antenna at terahertz frequency, Curr. Appl. Phys. 2015, 1047 (2015) [Google Scholar]
  61. H.H. Tran, I. Park, High-gain wideband resonant cavity antenna with single half‐effective‐wavelength‐thick dielectric layer, Microw. Opt. Technol. Lett. 58, 1693 (2016) [CrossRef] [Google Scholar]
  62. N. Hussain, T.K. Nguyen, I. Park, Performance comparison of a planar substrate-integrated Fabry-Pérot cavity antenna with different unit cells at terahertz frequency, European Conference on Antennas and Propagation (EuCAP), 1 (2016) [Google Scholar]
  63. T.S. Kwon, J.G. Lee, J.H. Lee, The gain estimation of a Fabry-Perot cavity (FPC) antenna with a finite dimension, J. Electromagn. Eng. Sci. 17, 241 (2017) [CrossRef] [Google Scholar]
  64. T.K. Nguyen, T.A. Ho, I. Park, H. Han, Full-wavelength dipole antenna on a GaAs membrane covered by a frequency selective surface for a terahertz photomixer, Prog. Electromagn. Res. 131, 441 (2012) [CrossRef] [Google Scholar]
  65. N. Hussain, I. Park, Design of a wide-gain-bandwidth metasurface antenna at terahertz frequency, AIP Adv. 7, 055313 (2017) [CrossRef] [Google Scholar]
  66. T.K. Nguyen, F. Rotermund, I. Park, A traveling-wave stripline dipole antenna on a substrate lens at terahertz frequency, Curr. Appl. Phys. 14, 998 (2014) [CrossRef] [Google Scholar]
  67. N. Hussain, I. Park, Performance of multiple-feed metasurface antennas with different numbers of patch cells and different substrate thicknesses, Adv. Comp. Electromagn. J. 33, 49 (2018) [Google Scholar]
  68. N. Hussain, K.E. Kedze, I. Park, Performance of a planar leaky-wave slit antenna for different values of substrate thickness, J. Electromagn. Eng. Sci. 17, 202 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.