EPJ Appl. Metamat.
Volume 5, 2018
Metamaterials'2017 – Metamaterials and Novel Wave Phenomena: Theory, Design and Application
Article Number 9
Number of page(s) 12
Published online 08 October 2018
  1. G.L.D. Landau, E.M. Lifshits, Electrodynamics of Continuous Media, 2nd edn, (Buttterwoth Heinmann, Oxford, 2002) [Google Scholar]
  2. S. Hrabar, I. Krois, I. Bonic, A., Kiricenko, E.U. Munoz, Broadband Epsilon-Near-Zero (ENZ) and Mu-Near-Zero (MNZ) Active Metamaterial, Final Report for Contract FA 8655-10-1-3030, EOARD/AFRL, August 2011 [Google Scholar]
  3. R.M. Foster, A reactance theorem, Bell Labs Syst. Tech. J. 3, 259 (1924) [CrossRef] [Google Scholar]
  4. D.M. Pozar, Microwave Engineering (Willey, New York, 1998) [Google Scholar]
  5. Q. Tang, Active Metamaterial: Gain and Stability, and Microfluidic Chip for THz Cell Spectroscopy, PhD thesis, The University of Arizona, 2017, [Google Scholar]
  6. J.L. Merrill, Theory of the negative impedance converter, Bell Sys. Tech. J. 30, 88 (1951) [CrossRef] [Google Scholar]
  7. J.G. Linvill, Transistor negative impedance converters, Proc. IR 41, 725 (1953) [Google Scholar]
  8. L. Verman, Negative circuit constants, Radio Eng. Proc. Inst. 19 676 (1931) [Google Scholar]
  9. B. van der Pol, A new transformation in alternating-current theory with an application to the theory of audition, Radio Eng. Proc. Inst. 18 220 (1930) [Google Scholar]
  10. A.K. Perry, Broadband antenna systems realized from active circuit conjugate impedance matching, AD-769 800, Naval Postgraduate School, 1973, [Google Scholar]
  11. F. Auzanneau, R.W. Ziolkowski, Theoretical study of synthetic bianisotropic materials, J. Electromag. Waves 12, 353 (1998) [Google Scholar]
  12. R.W. Ziolkowski, The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials, IEEE Trans. Ant. Propagat. 45 656. [Google Scholar]
  13. S.A. Tretyakov, T.G. Kharina, The perfectly matched layer as a synthetic material with active inclusions, Electromagnetics 20 155 (2000) [CrossRef] [Google Scholar]
  14. F. Auzanneau, R.W. Ziolkowski, Artificial composite materials consisting of nonlinearly loaded electrically small antennas: operational-amplifier-based circuits with applications to smart skins, IEEE Tran. Ant. Prop. 47 1330 (1999) [Google Scholar]
  15. S. Tretyakov, Meta-materials with wideband negative permittivity and permeability, Microwave Opt. Technol. Lett. 31, 163 (2001) [Google Scholar]
  16. S. Hrabar, I. Krois, B. Ivsic, D. Zaluski, G. Pavlaković, Active Dispersionless “ Plasmonic” Metamaterial − a Step Towards Broadband Cloaking, in: Proc. of the 2008 IEEE AP-S International Symposium and USNC/URSI National Radio Science Meeting (San Diego, 2008), p. 203 [Google Scholar]
  17. S. Hrabar, Active non-Foster metamaterials: from intriguing background physics to real-world applications, a plenary talk, in: proc. on metamaterials congress (Sankt Petersburg, 2012) [Google Scholar]
  18. S. Hrabar, Active radiofrequency metamaterial structures – Pros, cons and future trends, in: Proc. on Metamaterials Congress (Oxford, 2015) [Google Scholar]
  19. S. Hrabar, Active Dispersionless Metamaterials − a Path towards broadband Cloaking, in: Proc. on 2009 REME Workshop (Madrid, 2009) [Google Scholar]
  20. S. Hrabar, I. Krois, A. Kiricenko, Towards active dispersionless ENZ metamaterial for cloaking applications, J. Metamaterials 4 89 (2010) [CrossRef] [Google Scholar]
  21. B. Okorn, S. Hrabar, I. Krois, Investigation of basic physics of non-Foster negative capacitance in time domain, in: Proc. on ELMAR, (Zadar, 2011) p. 373 [Google Scholar]
  22. B. Okorn S. Hrabar, I. Krois, Physically sound model of a non-Foster negative capacitor, Automatika: J. Control Meas. Electron. Comput. Commun. 55, 244 (2017) [Google Scholar]
  23. P.Y. Chen, C. Argyropoulos, A. Alù, Broadening the cloaking bandwidth with non-Foster metasurfaces, Phys. Rev. Lett. 111, 233001 (2013) [CrossRef] [Google Scholar]
  24. J.C. Soric, A. Alù, Wideband tunable and non-Foster mantle cloaks, presented at USNC-URSI Nat Radio Sci Meeting, Boulder, CO, USA, 2014 [Google Scholar]
  25. S. Hrabar, Z. Sipus, I. Malcic, Broadening of cloaking bandwidth by passive and active techniques, in: D. Werner, D. Kwon (Eds.) A chapter in Transformation Electromagnetics and Metamaterials (Springer, London, 2013) [Google Scholar]
  26. S. Hrabar, I. Krois, I. Bonic, A. Kiricenko, Negative capacitor paves the way to ultra-broadband metamaterials, Appl. Phys. Lett. 99, 25403 (2011) [Google Scholar]
  27. S. Hrabar, I. Krois, I. Bonic, A. Kiricenko, Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterial, Appl. Phys. Lett. 102, 054081 (2013) [Google Scholar]
  28. J. Long, M. Jacob, D. Sievenpiper, Broadband fast-wave propagation in a non-Foster circuit loaded waveguide, IEEE Trans. Microw. Theory Techn. 62, 789 (2014) [CrossRef] [Google Scholar]
  29. A. Niang, A. de Lustrac, S.N. Burokur, Superluminal wave propagation in a non-Foster negative capacitor loaded transmission line, Electron. Lett. 53, 547 (2017) [CrossRef] [Google Scholar]
  30. J. Long, Non-Foster Circuit Loaded Periodic Structures for Broadband Fast and Slow Wave Propagation, Ph.D. Thesis, University of California, San Diego, 2015, [Google Scholar]
  31. S. Hrabar, I. Krois, I. Bonic, A. Kiricenko, Non-Foster elements − new path towards broadband ENZ and MNZ metamaterials, in: Proc. on EUCAP, (Prague, 2011), p. 2674 [Google Scholar]
  32. G. Eleftheriades, Analysis of bandwidth and loss in negative-refractive-index transmission-line (NRI-TL) media using coupled resonators, IEEE Microw. Wireless Compon. Lett. 17, 412 (2007) [CrossRef] [Google Scholar]
  33. S. Hrabar, I. Krois, I., Bonic, A. Kiricenko, D. Muha, Active Reconfigurable Metamaterial Unit Cell Based on Non-Foster Elements, Final Report for Contract FA8655-12-1-2081, 2013 EOARD /AFRL [CrossRef] [Google Scholar]
  34. H.-T. Chen, A.J. Taylor, N. Yu, A review of metasurfaces: physics and applications, Rep. prog. phys. 79, 1 (2016) [Google Scholar]
  35. D. Gregoire, C. White, J. Colburn, Wideband artificial magneticconductors loaded with non-Foster negative inductors, IEEE Ant. Wirel. Prop. Lett. 10, 1586 (2011) [Google Scholar]
  36. D.J. Gregoire, C.R. White, J.S. Colburn, A coaxial TEM cell for direct measurement of UHF artificial magnetic conductors, IEEE Ant. Prop. Mag. 54, 251 (2012) [CrossRef] [Google Scholar]
  37. J. Long, D. Sievenpiper, Low-profile and low-dispersion artificial impedance surface in the UHF band based on non-Foster circuit loading, IEEE Trans. Ant. Propag. 64, 3003 (2016) [Google Scholar]
  38. J. Mou, Z. Shen, Design and experimental demonstration of non-Foster active absorber, IEEE Trans. Ant. Propag. 65, 696 (2017) [CrossRef] [Google Scholar]
  39. J. Mou, Z. Shen, Broadband and thin magnetic absorber with non-Foster metasurface for admittance matching, Sci. Rep. 7, 1 (2017) [CrossRef] [Google Scholar]
  40. M. Barbuto, A. Monti, F. Bilotti, A. Toscano, Design of a non-Foster actively loaded SRR and application in metamaterial inspire components, IEEE Trans. Ant. Propag. 61, 1219 (2013) [Google Scholar]
  41. N. Zhu, R.W. Ziolkowski, Broad-bandwidth electrically small antenna augmented with an internal non-Foster element, IEEE Ant. Wirel. Propag. Lett. 11, 1116 (2012) [Google Scholar]
  42. N. Zhu, R.W. Ziolkowski, Broad bandwidth, electrically small, non-Foster element-augmented antenna designs, analyses, and measurements, IEICE Tran. Comm. 96, 2399 (2013) [Google Scholar]
  43. F. Albarracín-Vargas, V. Gonzalez-Posadas, F. Javier Herraíz-Martinez, D. Segovia-Vargas, Design method for actively matched antennas with non-Foster elements, IEE Tran. Ant. Prop. 64, 4118 (2016) [CrossRef] [Google Scholar]
  44. H. Mirzaei, G.V. Eleftheriades, A resonant printed monopole antenna with an embedded non-Foster matching network, IEEE Trans. Ant. Prop. 61, 5363 (2013) [Google Scholar]
  45. D.F. Sievenpiper, Superluminal waveguides based on non-Foster circuits for broadband leaky-wave antennas, IEEE Ant. Wirel. Prop. Lett. 10, 231 (2011) [Google Scholar]
  46. D. Muha, S. Hrabar, I. Krois, I. Bonic, A. Kiricenko, D. Zaluski, Design of UHF Microstrip Non-Foster Leaky-wave Antenna, in: Proc. ICECOM (Dubrovnik, 2013), p. 134 [Google Scholar]
  47. S. Hrabar, Leaky-wave Antenna based on Non-Foster Metamaterial − is stable operation feasible? in: Proc. on IWAT (Seoul, 2015), p. 7 [Google Scholar]
  48. O.O. Tade, Negative impedance converter for antenna matching, PhD thesis, University of Birmingham, 2014, [Google Scholar]
  49. C.R. White, J.W. May, J.S. Colburn, A variable negative-inductance integrated circuit at UHF frequencies, IEEE Microw. Wireless Compon. Lett. 22, 35 (2012) [Google Scholar]
  50. S. Saadat, H. Aghasi, E. Afshari, H. Mosallaei, Low-power negative inductance integrated circuits for GHz applications, IEEE Microw. Wireless Compon. Lett. 25, 118 (2015) [Google Scholar]
  51. S.E. Sussman-Fort, Gyrator-based biquad filters and negative impedance converters for microwaves, Int. J. RF Microwave CAE 8, 86 (1998) [CrossRef] [Google Scholar]
  52. S. Kolev, B. Delacressonniere, J. Gautier, Using a negative capacitance to increase the tuning range of a varactor diode in mmic technology, IEEE Tran. Microw. Theory Tech. 49, 2425 (2001) [CrossRef] [Google Scholar]
  53. D.S. Nagarkoti, Y. Hao, D.P. Steenson, L. Li, E.H. Linfield, K.Z. Rajab, Design of broadband non-Foster circuits based on resonant tunneling diodes, IEEE Ant. Wirel. Propag. Lett. 15, 1398 (2015) [CrossRef] [Google Scholar]
  54. H. Mirzaei, G.V. Eleftheriades, Realizing non-Foster reactive elements using negative-group-delay networks, IEEE Trans. Microw. Theory Techn. 61, 4322 (2013) [Google Scholar]
  55. H. Mirzaei, Negative-group-delay and non-Foster electromagnetic structures, Ph.D. dissertation, Dept. Elect. Comput. Eng., Toronto Univ., Toronto, ON, Canada, 2015. [Google Scholar]
  56. H. Mirzaei, G.V. Eleftheriades, Arbitrary-angle squint-free beamforming in series-fed antenna arrays using non-Foster elements synthesized by negative-group-delay networks, IEEE Trans. Ant. Propag 63, 1997 (2015) [CrossRef] [Google Scholar]
  57. T.P. Weldon, J.M.C. Covington, K. Smith R.S. Adams, Performance of digital discrete-time implementations of non-Foster circuit elements, in: Proc. on ISCAS (Lisbon, 2015), p. 2169 [Google Scholar]
  58. P.J. Kehoe K.K. Steer T.P. Weldon, Thevenin forms of digital discrete-time non-Foster RC and RL circuits, in: Proc. on IEEE APS/URSI (Fajardo, 2016), pp. 191–192 [Google Scholar]
  59. B.I. Popa, S.A. Cummer, An architecture for active metamaterial particles and experimental validation at RF, Microw. Opt. Techn. Lett. 49, 2574 (2007) [Google Scholar]
  60. Y. Yuan, B.-I. Popa, S.A. Cummer, Zero loss magnetic metamaterials using powered active unit cells, Optics Expr. 17 16135 (2009) [Google Scholar]
  61. E. Ugarte-Muñoz, S. Hrabar, D, Segovia-Vargas, A. Kiricenko, Stability of Non-Foster reactive elements for use in active metamaterials and antennas, IEEE Tran. AP-S 60, 3490 (2012) [Google Scholar]
  62. S. Stearns, Counterintuitive Aspects of Non-Foster Networks, Presentation slides from Adelphi Antenna Workshop on Electrically Small Antennas, Clarksville, MD, July 8-9, 2010 [Google Scholar]
  63. S.D. Stearns, Non-Foster Circuits and Stability Theory, in: Proc. on IEEE APS/URSI (Spokane, 2011), p. 1942 [Google Scholar]
  64. S.D. Stearns, Incorrect Stability Criteria for Non-Foster Circuits, in: Proc. on IEEE APS/URSI (Chicago, 2012), p. 1 [Google Scholar]
  65. S. Tretyakov, S. Maslovski, Veselago materials: what is possible and impossible about the dispersion of the constitutive parameters, IEEE Ant. Prop. Mag. 49, 37 (2007) [Google Scholar]
  66. Q. Tang, H. Xin, Stability analysis of Non-Foster circuit using normalized determinant function, IEEE Tran. Microw. Theory Techn. 65, 3269 (2017) [CrossRef] [Google Scholar]
  67. S.E. Sussman-Fort, Matching Network Design Using Non-Foster Impedances, Presentation slides, _foster_impedances.pdf [Google Scholar]
  68. S.E. Sussman-Fort, Non-Foster impedance matching of electrically-small antennas, IEEE Trans. Ant. Prop. 57, 2230 (2009) [Google Scholar]
  69. S. Hrabar, Is Stable dispersionless non-Foster DNG Metamaterial Indeed Impossible? in: Proc. on Metamaterial Congress (Copenhagen, 2014), p. 13 [Google Scholar]
  70. S. Hrabar, Metamaterial Structures based on “Negative” Elements-What Do We Know After a Decade of Research? in: Proc. on Metamaterial Congress (Rome, 2017) p. 197 [Google Scholar]
  71. S.R. Rengarajan, C.R. White, Stability analysis of superluminal waveguides periodically loaded with non-Foster circuits, IEEE Anten. Wireless Prop. Lett. 12, 1303 (2013) [CrossRef] [Google Scholar]
  72. J. Loncar, S. Hrabar, D. Muha, Stability of simple lumped-distributed networks with negative capacitors, IEEE Trans. Ant. Prop. 65, 390 (2017) [Google Scholar]
  73. Y. Fan, Research and Design of Non-Foster Active Metamaterials, Ph.D. Thesis, Queen Mary University, United Kingdom, 2013, [Google Scholar]
  74. K.Z. Rajab, Y. Hao, D. Bao, C.G. Parini, C. Vazquez, J. Philippakis, M. Philippakis, Stability of active magnetoinductive metamaterials, J. Appl. Phys. 108, 054904-1 (2010) [CrossRef] [Google Scholar]
  75. K.Z. Rajab, Y.F. Fan, Y. Hao, Characterization of active metamaterials based on negative impedance converters, J. Opt. 14, 114004-1 (2012) [CrossRef] [Google Scholar]
  76. S. Saadat, M. Adnan, H. Mosallaei, E. Afshari, Composite metamaterial and metasurface integrated with non-Foster active circuit elements: a bandwidth-enhancement investigation, IEEE Trans. Ant. Propag. 61, 1210 (2013) [Google Scholar]
  77. S.D. Stearns, Stable Band-pass Non- Foster Circuits, in: Proc. on IEEE APS/URSI (Vancouver, 2015), p. 1386 [Google Scholar]
  78. S. Hrabar, A. Kiricenko, Towards broadband tunable non-Foster radiating systems, in: Proc. on Metamaterials Congress, (Crete, 2016), p. 133 [Google Scholar]
  79. S. Hrabar, A. Kiricenko, I. Krois, Antenna-transmitter based on Non-Foster Source, in: Proc. on IEEE APS/URSI (San Diego, 2017), p. 875 [Google Scholar]
  80. J. Loncar, S. Hrabar, A. Kiricenko, Stability of Metasurface-Based Parity-Time Symmetric Systems, in: Proc. on Metamaterial Congress, (Crete, 2016), p. 738 [Google Scholar]
  81. Y. Ràdi, D.L. Sounas, A. Alù, S.A. Tretyakov, Parity-time symmetric teleportation, Phys. Rev. B 93, 235427 (2016) [CrossRef] [Google Scholar]
  82. J Vehmas, S. Hrabar, S. Tretyakov, Omega transmission lines with applications to effective medium models of metamaterials, J. App. Phys. 115, 134905-1 (2014) [CrossRef] [Google Scholar]
  83. J. Vehmas, S. Hrabar, S. Tretyakov, Transmission lines emulating moving media, N. J. Phys. 16, 1 (2014) [CrossRef] [Google Scholar]
  84. D. Zaluski, S. Hrabar, D. Muha, Practical realization of DB metasurface, Appl. Phys. Lett. 104, 234106-1 (2014) [CrossRef] [Google Scholar]
  85. D. Zaluški, A. Grbic, S. Hrabar, Analytical and experimental characterization of metasurfaces with normal polarizability, Phys. Rev. 93, 155156-1 (2016) [Google Scholar]
  86. I.V. Lindell, A. Sihvola, Electromagnetic wave reflection from boundaries defined by general linear and local conditions, IEEE Trans. Ant. Prop. 65, 4656 (2017) [CrossRef] [Google Scholar]
  87. J. Skaar, Fresnel equations and the refractive index of active media, Phys. Rev. E 73, 026605-1 (2006) [CrossRef] [Google Scholar]
  88. A. Fang, Reducing the losses of optical metamaterials, Ph.D. Thesis, Iowa State University, 2013, [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.