Issue
EPJ Appl. Metamat.
Volume 8, 2021
Frontiers in microwave, photonic, and mechanical metamaterials
Article Number 3
Number of page(s) 6
DOI https://doi.org/10.1051/epjam/2020014
Published online 22 January 2021
  1. F. Monticone, H.M. Doeleman, W. Den Hollander, A.F. Koenderink, A. Alù, Trapping light in plain sight: embedded photonic eigenstates in zero-index metamaterials, Laser Photon. Rev. 12, 1700220 (2018) [CrossRef] [Google Scholar]
  2. A. Krasnok, A. Alú, Embedded scattering eigenstates using resonant metasurfaces, J. Opt. 20, 064002 (2018) [CrossRef] [Google Scholar]
  3. D. Ramaccia, F. Bilotti, A. Toscano, Angular momentum-biased metamaterials for filtering waveguide components and antennas with non-reciprocal behavior, in 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (IEEE, 2014), pp. 250– 252 [CrossRef] [Google Scholar]
  4. D. Ramaccia, A. Toscano, F. Bilotti, Scattering and absorption from super-spherical nanoparticles: analysis and design for transparent displays [Invited], J. Opt. Soc. Am. B 34, D62 (2017) [CrossRef] [Google Scholar]
  5. D. Ramaccia, S. Arcieri, A. Toscano, F. Bilotti, Core-Shell Super-Spherical Nanoparticles for LSPR-Based Sensing Platforms, IEEE J. Sel. Top. Quantum Electron. 23, 380 (2017) [CrossRef] [Google Scholar]
  6. M.G. Silveirinha, Trapping light in open plasmonic nanostructures, Phys. Rev. A 89, 023813 (2014) [CrossRef] [Google Scholar]
  7. S. Lannebrio, G. Silveirinha, Optical meta-atom for localization of light with quantized energy, Nat. Commun. 6, 8766 (2015) [Google Scholar]
  8. T. Nakanishi, T. Otani, Y. Tamayama, M. Kitano, Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency, RAPID Commun. Phys. Rev. B 87, 161110 (2013) [CrossRef] [Google Scholar]
  9. C.W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S.G. Johnson, J.D. Joannopoulos, M. Soljačic, S. Soljačić1, Observation of trapped light within the radiation continuum, Nature 499, 188 (2013) [Google Scholar]
  10. Z. Sakotic, A. Krasnok, N. Cselyuszka, N. Jankovic, A. Alú, Berreman embedded eigenstates for narrow-band absorption and thermal emission, Phys. Rev. Appl. 10, 64073 (2020) [CrossRef] [Google Scholar]
  11. S. Hrabar, B. Jelacic, L. Mandic, J. Papak, Towards experimental verification of zero-reflection from time-varying capacitor, in 2019 13th International Congress on Artificial Materials for Novel Wave Phenomena, Metamaterials 2019 (Institute of Electrical and Electronics Engineers Inc., 2019), pp. X164– X165 [Google Scholar]
  12. D. Ramaccia, D.L. Sounas, A. Alu, A. Toscano, F. Bilotti, Phase-induced frequency conversion and doppler effect with time-modulated metasurfaces, IEEE Trans. Antennas Propag. 68, 1607 (2020) [CrossRef] [Google Scholar]
  13. D. Ramaccia, D.L. Sounas, A. Marini, A. Toscano, F. Bilotti, Electromagnetic isolation induced by time-varying metasurfaces: non-reciprocal bragg grating, IEEE Antennas Wirel. Propag. Lett. 19, 1886 (2020) [CrossRef] [Google Scholar]
  14. M.S. Mirmoosa, G.A. Ptitcyn, V.S. Asadchy, S.A. Tretyakov, Time-varying reactive elements for extreme accumulation of electromagnetic energy, Phys. Rev. Appl. 11, 014024 (2019) [CrossRef] [Google Scholar]
  15. G.A. Ptitcyn, M.S. Mirmoosa, V.S. Asadchy, S.A. Tretyakov, Time-modulated reactive elements for control of electromagnetic energy , in 2019 URSI International Symposium on Electromagnetic Theory, EMTS 2019 (Institute of Electrical and Electronics Engineers Inc., 2019) [Google Scholar]
  16. F.S. Cuesta, V.S. Asadchy, A.D. Sayanskiy, V.A. Lenets, M.S. Mirmoosa, X. Ma, S.B. Glybovski, S.A. Tretyakov, Non-scattering metasurface-bound cavities for field localization, enhancement, and suppression, IEEE Trans. Antennas Propag. 68, 1689 (2019) [Google Scholar]
  17. V.S. Asadchy, M. Albooyeh, S.N. Tcvetkova, A. Díaz-Rubio, Y. Ra'Di, S.A. Tretyakov, Perfect control of reflection and refraction using spatially dispersive metasurfaces, Phys. Rev. B 94, 075142 (2016) [CrossRef] [Google Scholar]
  18. S. Taravati, Giant linear nonreciprocity, zero reflection, and zero band gap in equilibrated space-time-varying media, Phys. Rev. Appl. 9, 064012 (2018) [CrossRef] [Google Scholar]
  19. F. Monticone, A. Alù, Embedded photonic eigenvalues in 3D nanostructures, Phys. Rev. Lett. 112, 213903 (2014) [CrossRef] [Google Scholar]
  20. D.G. Baranov, A. Krasnok, A. Alù, Coherent virtual absorption based on complex zero excitation for ideal light capturing, Optica 4, 1457 (2017) [CrossRef] [Google Scholar]
  21. A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, A. Alú, Anomalies in light scattering, Adv. Opt. Photonics 11, 892 (2019) [CrossRef] [Google Scholar]
  22. H. Li, A. Mekawy, A. Krasnok, A. Alú, Virtual parity-time symmetry, Phys. Rev. Lett. 124, 193901 (1939) [CrossRef] [Google Scholar]
  23. G. Trainiti, Y. Ra'di, M. Ruzzene, A. Alú, Coherent virtual absorption of elastodynamic waves, Sci. Adv. 5, eaaw3255 (2019) [CrossRef] [Google Scholar]
  24. Y. Ra'di, A. Krasnok, A. Alù, Virtual critical coupling, ACS Photonics 7, 1468 (2020) [CrossRef] [Google Scholar]
  25. A.V. Marini, D. Ramaccia, A. Toscano, F. Bilotti, Metasurface-bounded open cavities supporting virtual absorption: free-space energy accumulation in lossless systems, Opt. Lett. 45, 3147 (2020) [CrossRef] [Google Scholar]
  26. A. Marini, D. Ramaccia, Metasurface-bounded open cavities supporting virtual absorption: Free-space energy accumulation in lossless systems, in 2019 13th International Congress on Artificial Materials for Novel Wave Phenomena, Metamaterials 2019 (Institute of Electrical and Electronics Engineers Inc., 2019), pp. X242– X244 [Google Scholar]
  27. A. Marini, D. Ramaccia, A. Toscano, F. Bilotti, Perfect matching of reactive-loaded transmission lines through complex excitation, in 14th European Conference on Antennas and Propagation, EuCAP 2020 (Institute of Electrical and Electronics Engineers Inc., 2020) [Google Scholar]
  28. Advanced Design System (ADS) Simulation Elements Software|Keysight (formerly Agilent's Electronic Measurement), https://www.keysight.com/en/pc-1375582/advanced-design- system-ads-simulation-elements?cc=US&lc=eng [Google Scholar]
  29. D.M. Pozar, Microwave engineering (Wiley, 2012) [Google Scholar]
  30. S. Lepeshov, A. Krasnok, Virtual optical pulling force, Optica 7, 1024 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.