EPJ Appl. Metamat.
Volume 6, 2019
Metamaterials Research and Development in China
Article Number 8
Number of page(s) 9
Published online 18 February 2019
  1. A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 , 183 (2007) [Google Scholar]
  2. S. Edwards Rebecca, S. Coleman Karl, Graphene synthesis: relationship to applications, Nanoscale 5 , 38 (2013) [CrossRef] [Google Scholar]
  3. A.H. Castro Neto, F. Guinea, N.M.R. Peres et al., The electronic properties of graphene, Rev. Mod. Phys. 81 , 109 (2009) [CrossRef] [Google Scholar]
  4. K.S. Novoselov, V.I. Fal'Ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature 490 , 192 (2012) [CrossRef] [PubMed] [Google Scholar]
  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, V. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 , 666 (2004) [CrossRef] [PubMed] [Google Scholar]
  6. J. Kedzierski, P.-L. Hsu, P. Healey et al., Epitaxial graphene transistors on SIC substrates, IEEE Trans. Electron Devices 55 , 2078 (2008) [CrossRef] [Google Scholar]
  7. S. Stankovich, D.A. Dikin, H.B. Dommett Geoffrey et al., Graphene-based composite materials, Nature 442 , 282 (2006) [CrossRef] [PubMed] [Google Scholar]
  8. S. Stankovich, D.A. Dikin, R.D. Piner et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 , 1558 (2007) [CrossRef] [Google Scholar]
  9. M. Dragoman, D. Neculoium, D. Dragoman, G. Deligeorgis, G. Konstantinidis, A. Cismaru, F. Coccetti, R. Plana, Graphene for microwave, IEEE Microw. Mag. 11 , 81 (2010) [CrossRef] [Google Scholar]
  10. V.C. Tung, M.J. Allen, Y. Yang, R.C. Kaner, High-throughput solution processing of large-scale graphene, Nat. Nanotechnol. 4 , 2 (2009) [CrossRef] [Google Scholar]
  11. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5 , 574 (2010) [CrossRef] [PubMed] [Google Scholar]
  12. M. Bozzi, L. Pierantoni, S. Bellucci, Applications of Graphene at microwave frequencies, Radioengineering 24 , 661 (2015) [CrossRef] [Google Scholar]
  13. A.K. Geim, Graphene: status and prospects, Science 324 , 1530 (2009) [CrossRef] [PubMed] [Google Scholar]
  14. L. Pierantoni, D. Mencarelli, M. Bozzi, R. Moro, S. Bellucci, Microwave applications of graphene for tunable devices, in: 44th European Microwave Conference, Rome, Italy, 6–9 October 2014, pp. 1456–1459 [Google Scholar]
  15. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10 , 569 (2011) [CrossRef] [PubMed] [Google Scholar]
  16. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 , 385 (2008) [Google Scholar]
  17. K.I. Bolotin et al., Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 , 351 (2008) [CrossRef] [Google Scholar]
  18. A.Q. Zhang, W.B. Lu, Z.G. Liu, H. Chen, B.H. Huang, Dynamically tunable substrate-integrated-waveguide attenuator using graphene, IEEE Trans. Microw. Theory Tech. 66 , 3081 (2018) [CrossRef] [Google Scholar]
  19. A.Q. Zhang, Z.G. Liu, W.B. Lu, H. Chen, Graphene-based dynamically tunable attenuator on a half-mode substrate integrated waveguide, Appl. Phys. Lett. 112 , 161903 (2018) [CrossRef] [Google Scholar]
  20. A.Q. Zhang, Z.G. Liu, W.B. Lu, H. Chen, Dynamically tunable attenuator on graphene-based microstrip line, IEEE Trans. Microw. Theory Tech. (2018). DOI: 10.1109/TMTT.2018.2885761 (early access) [Google Scholar]
  21. A.Q. Zhang, Z.G. Liu, H. Chen, W.B. Lu, Graphene-based dynamically tunable attenuator on a coplanar waveguide or a slot line, IEEE Trans. Microw. Theory Tech. 67 , 70 (2019) [CrossRef] [Google Scholar]
  22. O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene enabled electrically switchable radar-absorbing surfaces, Nat. Commun. 6 , 1 (2015) [Google Scholar]
  23. B. Wu, H.M. Tuncer, M. Naeem, B. Yang, M.T. Cole, W.I. Milne, Y. Hao, Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140 GHz, Sci. Rep. 4 , 4130 (2014) [CrossRef] [Google Scholar]
  24. D. Yi, X. Wei, Y. Xu, Experimental demonstration of transparent microwave absorber based on graphene, in: IEEE MTT-S International Wireless Symposium Digest, Shanghai, China, 2016, pp. 1–2 [Google Scholar]
  25. D. Yi, X.C. Wei, Y.L. Xu, Transparent microwave absorber based on patterned graphene: design, measurement, and enhancement, IEEE Trans. Nanotechnol. 16 , 484 (2017) [CrossRef] [Google Scholar]
  26. D. Yi, X.-C. Wei, Y.-L. Xu, Tunable microwave absorber based on patterned graphene, IEEE Trans. Microw. Theory Tech. 65 , 2819 (2017) [CrossRef] [Google Scholar]
  27. H. Chen, W.B. Lu, Z.G. Liu, J. Zhang, A.Q. Zhang, B. Wu, Experimental demonstration of microwave absorber using large-area multilayer graphene-based frequency selective surface, IEEE Trans. Microw. Theory Tech. 66 , 3807 (2018) [CrossRef] [Google Scholar]
  28. M. Dragoman et al., A tunable microwave slot antenna based on graphene, Appl. Phys. Lett. 106 , 153101-1 (2015) [CrossRef] [Google Scholar]
  29. A.-C. Bunea, D. Neculoiu, G. Konstantinidis, G. Deligiorgis, X-band tunable slot antenna with graphene patch, in: Proceedings of 2015 European Microwave Conference, 2015, pp. 614–617 [Google Scholar]
  30. D. Li, X.C. Wei, N. Meng et al., Exploring graphene loaded antenna for GHz potential applications by experiment, in: 2015 Asia Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015 [Google Scholar]
  31. Y.T. Zhao, B. Wu, Y. Zhang, Y. Hao, Transparent electromagnetic shielding enclosure with CVD grapheme, Appl. Phys. Lett. 109 , 1 (2016) [Google Scholar]
  32. H. Chen, Z.G. Liu, W.B. Lu, A.Q. Zhang, X.B. Li, Microwave beam reconfiguration based on graphene ribbon, IEEE Trans. Antennas Propag. 66 , 6049 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.