Open Access
EPJ Appl. Metamat.
Volume 6, 2019
Article Number 7
Number of page(s) 11
Published online 18 February 2019
  1. C.F. Guo, T. Sun, F. Cao et al., Metallic nanostructures for light trapping in energy-harvesting devices, Light Sci. Appl. 3 , e161 (2014) [Google Scholar]
  2. Y. Takeda, H. Iizuka, N. Yamada et al., Light trapping for photovoltaic cells using polarization-insensitive angle-selective filters under monochromatic illumination, Appl. Opt. 56 , 5761 (2017) [CrossRef] [Google Scholar]
  3. S.V. Boriskina, H. Ghasemi, G. Chen, Plasmonic materials for energy: from physics to applications, Mater. Today 16 , 10 (2013) [CrossRef] [Google Scholar]
  4. B.L. Sopori, J. Madjdpour, W. Chen, Y. Zhang, Light-trapping in a-Si solar cells: a summary of the results from pv optics, April 27, 1999; Golden, Colorado ( accessed July 15, 2018), University of North Texas Libraries, Digital Library,; crediting UNT Libraries Government Documents Department [Google Scholar]
  5. A. Marti, A. Luque, Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, 1st edn. Series in Optics and Optoelectronics (CRC PRESS, Florida, 2003), Vol. 4 [CrossRef] [Google Scholar]
  6. Q. Ni, H. Alshehri, Y. Yang et al., Plasmonic light trapping for enhanced light absorption in film-coupled ultrathin metamaterial thermophotovoltaic cells, Front. Energy 12 , 185 (2018) [CrossRef] [Google Scholar]
  7. G.J. Snyder, Thermoelectric energy harvesting (Springer, Boston, MA, 2009) [Google Scholar]
  8. H.J. Goldsmid, The physics of thermoelectric energy conversion, 2053–2571 (Morgan and Claypool Publishers, CA, 2017) [CrossRef] [Google Scholar]
  9. J. Yellowhair, C.K. Ho, J.D. Ortega, J.M. Christian, C.E. Andraka, Testing and optical modeling of novel concentrating solar receiver geometries to increase light trapping and effective solar absorptance, Proc. SPIE 9559, High and Low Concentrator Systems for Solar Energy Applications X, 95590A (5 September 2015); doi: 10.1117/12.2186647 [Google Scholar]
  10. C. Honsberg, S. Bowden, (accessed July 10, 2018) [Google Scholar]
  11. C. Chang, C. Yang, Y. Liu et al., Efficient solar thermal energy harvest driven by interfacial plasmonic heating assisted evaporation, ACS Appl. Mater. Interfaces 8 , 23412 (2016) [CrossRef] [Google Scholar]
  12. S. Ishii, R.P. Sugavaneshwar, T. Nagao, Titanium nitride nanoparticles as plasmonic solar heat transducers, J. Phys. Chem. C 120 , 2343 (2016) [CrossRef] [Google Scholar]
  13. Y. He, M. Chen, X. Wang, Y. Hu, Plasmonic multi thorny gold nanostructures for enhanced solar thermal conversion, Sol. Energy 171, 73 (2018) [CrossRef] [Google Scholar]
  14. M. Chen, Y. He, Plasmonic nanostructures for broadband solar absorption based on the intrinsic absorption of metals, Sol. Energy Mater. Sol. Cells 188 , 156 (2018) [CrossRef] [Google Scholar]
  15. J.C.C. Fan, S.A. Spura, Selective black absorbers using rf sputtered cr2o3/cr cermet films, Appl. Phys. Lett. 30 , 511 (1977) [CrossRef] [Google Scholar]
  16. H.G. Craighead, R.A. Buhrman, Optical properties of selectively absorbing Ni/Al2O3 composite films, Appl. Phys. Lett. 31 , 423 (1977) [CrossRef] [Google Scholar]
  17. V. Teixeira, E. Sousa, M.F. Costa et al., Spectrally selective composite coatings of crcr2o3 and moal2o3 for solar energy applications, Thin Solid Films 392 , 320 (2001) [CrossRef] [Google Scholar]
  18. K.D. Olson, J.J. Talghader, Absorption to reflection transition in selective solar coatings, Opt. Express 20 , A554 (2012) [CrossRef] [Google Scholar]
  19. C. Kennedy, Review of mid- to high-temperature solar selective absorber materials, techrep., National Renewable Energy Laboratory, Golden, CO, USA (2002) [CrossRef] [Google Scholar]
  20. M.A. Garcia, Surface plasmons in metallic nanoparticles: fundamentals and applications, J. Phys. D: Appl. Phys. 44 , 283001 (2011) [CrossRef] [Google Scholar]
  21. G.C. van de Hulst, Light scattering by small particles (Dover, New York, 2000) [Google Scholar]
  22. S. Callard, A. Gagnaire, J. Joseph, Fabrication and characterization of graded refractive index silicon oxynitride thin films, J. Vac. Sci. Technol. A 15 , 2088 (1997) [CrossRef] [Google Scholar]
  23. S. Ilyas, M. Gal, Graded refractive index devices from porous silicon, in: IEEE 2006 International Conference on Nanoscience and Nanotehnology, Brisbane, QLD, Australia, 2006 [Google Scholar]
  24. G. Korotcenkov, Porous silicon: from formation to application (CRC Press, Taylor and Francis Group, New York, 2016), Vol. 1 [Google Scholar]
  25. R. Herino, A. Perio, K. Barla et al., Microstructure of porous silicon and its evolution with temperature, Mater. Lett. 2 , 519 (1984) [CrossRef] [Google Scholar]
  26. V.A. Labunov, V.P. Bondarenko, V.E. Borisenko et al., High temperature treatment of porous silicon, Phys. Status Solidi A 102 , 193 (1987) [CrossRef] [Google Scholar]
  27. S.M. Weiss, M. Molinari, P.M. Fauchet, Temperature stability for silicon based photonic bandgap structures, Appl. Phys. Lett. 83 , 1980 (2003) [CrossRef] [Google Scholar]
  28. E.D. Palik, E.J. Prucha, Handbook of optical constants of solids (Academic Press, Boston, MA, 1997) [Google Scholar]
  29. Y. Gutierrez, R. Alcaraz de la Osa, D. Ortiz, et al., Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium, Appl. Sci. 8 , 64 (2018) [CrossRef] [Google Scholar]
  30. C. Bohren, D.R. Huffman, Absorption and scattering of light by small particles, Wiley Science Paperback Series (Wiley VCH, Weinheim, 1998) [CrossRef] [Google Scholar]
  31. N.W. Ashcroft, N.D. Mermin, Solid state physics (Cengage Learning, New York, 1976) [Google Scholar]
  32. P. Patsalas, N. Kalfagiannis, S. Kassavetis, Optical properties and plasmonic performance of titanium nitride, Materials 8 , 3128 (2015) [CrossRef] [Google Scholar]
  33. A. Alu, A. Salandrino, N. Engheta, Negative effective permeability and left handed materials at optical frequencies, Opt. Express 14 , 1557 (2006) [CrossRef] [Google Scholar]
  34. D.J. Lockwood, G.C. Aers, L.B. Allard et al., Optical properties of porous silicon, Can. J. Phys. 70 , 1184 (1992) [CrossRef] [Google Scholar]
  35. N. Ishikura, M. Fujii, K. Nishida et al., Broadband rugate filters based on porous silicon, Opt. Mater. 31 , 102 (2008) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.