Issue
EPJ Appl. Metamat.
Volume 6, 2019
Metamaterials Research and Development in Japan
Article Number 21
Number of page(s) 6
DOI https://doi.org/10.1051/epjam/2019019
Published online 11 November 2019
  1. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and µ , Sov. Phys. −Usp. 10, 509–514 (1968) [CrossRef] [Google Scholar]
  2. C. Caloz, T. Itoh, Electromagnetic Metamaterials—Transmission Line Theory and Microwave Applications (Wiley, New York, 2006) [Google Scholar]
  3. N. Engheta, R.W. Ziolkowski, Metamaterials—Physics and Engineering Explorations (IEEE Press, Piscataway, NJ, 2006) [Google Scholar]
  4. G.V. Eleftheriades, K.G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications (IEEE Press, Piscataway, New Jersey, 2005) [CrossRef] [Google Scholar]
  5. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312, 1780–1782 (2006) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. T. Koschny, L. Zhang, C. Soukoulis, Isotropic three-dimensional left-handed metamaterials, Phys. Rev. B 71, 121103 (2005) [CrossRef] [Google Scholar]
  7. S.M. Rudolph, A. Grbic, A broadband three-dimensionally isotropic negative-refractive-index medium, IEEE Trans. Antennas Propag. 60, 3661–3669 (2012) [CrossRef] [Google Scholar]
  8. A. Grbic, G.V. Eleftheriades, An isotropic three-dimensional negative-refractive-index transmission line metamaterial, J. Appl. Phys. 98, 043106 (2005) [CrossRef] [Google Scholar]
  9. P. Alitalo, S. Maslovski, S. Tretyakov, Three-dimensional isotropic perfect lens based on LC-loaded transmission lines, J. Appl. Phys. 99, 064912 (2006) [CrossRef] [Google Scholar]
  10. M. Zedler, C. Caloz, P. Russer, A 3-D isotropic left-handed metamaterial based on the rotated transmission-line matrix (TLM) scheme, IEEE Trans. Microw. Theory Tech. 55, 2930–2941 (2007) [CrossRef] [Google Scholar]
  11. L. Lewin, The electrical constants of a material loaded with spherical particles, Proc. Inst. Electr. Eng. 94, 65–68 (1947) [Google Scholar]
  12. Q. Zhao, J. Zhou, F. Zhang, D. Lippens, Mie resonance-based dielectric metamaterials, Mater. Today 12, 60–69 (2009) [CrossRef] [Google Scholar]
  13. S. Jahani, Z. Jacob, All-dielectric metamaterials, Nat. Nanotech. 2, 23–36 (2016) [CrossRef] [Google Scholar]
  14. F. Gaufillet, S. Marcellin, É. Akmansoy, Dielectric metamaterial-based gradient index lens in the terahertz frequency range, IEEE J. Sel. Topics Quantum Electr. 23, 7–9 (2017) [CrossRef] [Google Scholar]
  15. C.L. Holloway, E. Kuester, J. Baker-Javis, P. Kabos, A double negative (DNG) composite medium composed of magneto-dielectric spherical particles embedded in a matrix, IEEE Trans. Antennas Propag. 51, 2596–2603 (2003) [CrossRef] [Google Scholar]
  16. L. Jylha, I. Kolmakov, S. Maslovski, S. Tretyakov, Modeling of isotropic backward-wave materials composed of resonant spheres, J. Appl. Phys. 99, 043102 (2006) [CrossRef] [Google Scholar]
  17. I. Vendik, O. Vendik, M. Gashinova, Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability, Tech. Phys. Lett. 32, 429–433 (2006) [CrossRef] [Google Scholar]
  18. A. Ahmadi, H. Mosallaei, Physical configuration and performance modeling of all-dielectric metamaterials, Phys. Rev. B 77, 045104 (2008) [CrossRef] [Google Scholar]
  19. S. Ghadarghadr, H. Mosallaei, Dispersion diagram characteristics of periodic array of dielectric and magnetic materials based spheres, IEEE Trans. Antennas Propag. 57, 149–160 (2009) [CrossRef] [Google Scholar]
  20. R.A. Shore, A.D. Yaghjian, Traveling waves on three-dimensional periodic arrays of two different alternating magnetodielectric spheres, IEEE Trans. Antennas Propag. 57, 3077–3091 (2009) [CrossRef] [Google Scholar]
  21. B.-J. Seo, T. Ueda, T. Itoh, H. Fetterman, Isotropic left handed material at optical frequency with dielectric spheres embedded in negative permittivity medium, Appl. Phys. Lett. 88, 161122 (2006) [CrossRef] [Google Scholar]
  22. T. Ueda, A. Lai, T. Itoh, Demonstration of negative refraction in a cut-off parallel-plate waveguide loaded with two dimensional lattice of dielectric resonators, IEEE Trans. Microw. Theory Technol. 55, 1280–1287 (2007) [CrossRef] [Google Scholar]
  23. T. Ueda, N. Michishita, M. Akiyama, T. Itoh, Dielectric-resonator-based composite right/left handed transmission lines and their application to leaky wave antenna, IEEE Trans. Microw. Theory Technol. 56, 2259–2269 (2008) [CrossRef] [Google Scholar]
  24. T. Ueda, N. Michishita, M. Akiyama, T. Itoh, Anisotropic 3-D composite right/left handed metamaterial structures using dielectric resonators and conductive mesh plates, IEEE Trans. Microw. Theory Technol. 58, 1766–1773 (2010) [CrossRef] [Google Scholar]
  25. A.I. Kuznetsov, A.E. Miroshnichenko, Y.H. Fu, J. Zhang, B. Luk'yanchuk, Magnetic light, Sci. Rep. 2, 492 (2012) [Google Scholar]
  26. A.B. Evlyukhin, S.M. Novikov, U. Zywietz, R.L. Eriksen, C. Reinhardt, S.I. Bozhevolnyi, B.N. Chichkov, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12, 3749–3755 (2012) [CrossRef] [Google Scholar]
  27. Y. Zhao, B. Li, C. Lan, K. Bi, Z. Qu, Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range, Opt. Express 25, 22158–22163 (2017) [CrossRef] [Google Scholar]
  28. Y. Sato, T. Ueda, Y. Kado, T. Itoh, Isotropic 3-D cubic CRLH metamaterials using dielectric resonators and metallic jungle gym structure, IEEE MTT-S Int. Wireless Sym. Dig. 1–3 (2013) [Google Scholar]
  29. T. Ishiyama, T. Ueda, Y. Sato, T. Itoh, Unit cell block including dielectric cube wrapped with metallic wire mesh for 3-D isotropic CRLH metamaterials, in Proc. 2015 Asia-Pacific Microw. Conf., vol. 3, 2015, pp. 1–3 [Google Scholar]
  30. T. Yamaguchi, T. Ishiyama, T. Ueda, T. Itoh, Unit cell block for 3-D isotropic negative-index metamaterials impedance-matched to free space by using dielectric cubes and metallic mesh, in Proc. 2018 Asia-Pacific Microw. Conf., FR1-D-5, 2018, pp. 1–3. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.