Issue
EPJ Appl. Metamat.
Volume 5, 2018
Metamaterials'2017 – Metamaterials and Novel Wave Phenomena: Theory, Design and Application
Article Number 4
Number of page(s) 7
DOI https://doi.org/10.1051/epjam/2017013
Published online 06 March 2018
  1. J. Li, J.B. Pendry, Hiding under the carpet: A new strategy for cloaking, Phys. Rev. Lett. 101, 203901 (2008) [CrossRef] [PubMed] [Google Scholar]
  2. D.R. Smith, W.J. Padilla, D. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184 (2000) [CrossRef] [PubMed] [Google Scholar]
  3. J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966 (2000) [CrossRef] [PubMed] [Google Scholar]
  4. C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials, Nat. Photonics. 5, 523–530 (2011) [CrossRef] [Google Scholar]
  5. A. Alù, N. Engheta, Multifrequency optical invisibility cloak with layered plasmonic shells, Phys. Rev. Lett. 100, 113901 (2008) [CrossRef] [Google Scholar]
  6. A. Alù, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E. 72, 016623 (2005) [CrossRef] [Google Scholar]
  7. A. Alù, Mantle cloak: invisibility induced by a surface, Phys. Rev. B. 80, 245115 (2009) [CrossRef] [Google Scholar]
  8. C. Argyropoulos, P.Y. Chen, G. D'Aguanno, N. Engheta, A. Alù, Boosting optical nonlinearities in ε-near-zero plasmonic channels, Phys. Rev. B. 85, 045129 (2012) [CrossRef] [Google Scholar]
  9. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic crystals: molding the flow of light (Princeton University Press, Princeton, NJ 2008) [Google Scholar]
  10. R.W. Ziolkowski, E. Heyman, Wave propagation in media having negative permittivity and permeability, Phys. Rev. E. 64, 056625 (2001) [CrossRef] [Google Scholar]
  11. W.M. Zhu, Q.H. Song et al., A random access reconfigurable metamaterial and a tunable flat lens, Adv. Mat. 271, 4739–4743 (2015) [CrossRef] [Google Scholar]
  12. U. Leonhardt, Optical conformal mapping, Science 312, 1777–1780 (2006) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. U. Leonhardt, T. Tyc, Broadband invisibility by non-euclidean cloaking, Science 323, 110–112 (2009) [CrossRef] [PubMed] [Google Scholar]
  14. R. Liu, C. Ji, J.J. Mock, J.Y. Chin, T.J. Cui, D.R. Smith, Broadband ground-plane cloak, Science 323, 366–369 (2009) [CrossRef] [Google Scholar]
  15. E. Kallos, C. Argyropoulos, Y. Hao, Ground-plane quasi cloaking for free space, Phys. Rev. A. 79, 063825 (2009) [CrossRef] [Google Scholar]
  16. L. Novotny, N. van Hulst, Antennas for light, Nat. Photonics. 5, 83–90 (2011) [CrossRef] [Google Scholar]
  17. Q. Wu, T. D. Hewitt, X.-C. Zhang, Two-dimensional electro-optic imaging of THz beams, Appl. Phys. Lett. 69, 1026 (1996) [CrossRef] [Google Scholar]
  18. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, S. Zhang, Three-dimensional optical holography using a plasmonic metasurface, Nat. Commun. 4, 2808 (2013) [CrossRef] [Google Scholar]
  19. H. Steyskal, A. Hessel, J. Shmoys, On the gain-versus-scan trade-offs and the phase gradient synthesis for a cylindrical dome antenna, IEEE Antennas Propag. 27, 825–831 (1979) [CrossRef] [Google Scholar]
  20. M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, M. Essaaidi, Stacked complementary metasurfaces for ultraslow microwave metamaterials, Appl. Phys. Lett. 96, 164103 (2010) [CrossRef] [Google Scholar]
  21. J. Romeu, Y. Rahmat-Samii, Fractal FSS: a novel dual-band frequency selective surface, IEEE Antennas Propag. 48, 1097–1105 (2000) [CrossRef] [Google Scholar]
  22. K. Sarabandi, N. Behdad, A frequency selective surface with miniaturized elements, IEEE Trans. Antennas Propag. 55, 1239–1245 (2007) [CrossRef] [Google Scholar]
  23. A. Ben Munk, Frequency selective surfaces: theory and design (John Wiley, New York, 2000) [CrossRef] [Google Scholar]
  24. A. Abbaspour-Tamijani, K. Sarabandi, G.M. Rebeiz, Antenna-Filter-Antenna arrays as a class of bandpass frequency-selective surfaces, IEEE Trans. Microw. Theory Tech. 52, 1781–1789 (2004) [CrossRef] [Google Scholar]
  25. R. Mittra, C. H. Chan, T. Cwik, Techniques for analyzing frequency selective surfaces-a review, IEEE 76, 1593–1615 (1988) [CrossRef] [Google Scholar]
  26. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334, 333–337 (2011) [CrossRef] [PubMed] [Google Scholar]
  27. C.L. Holloway, M.A. Mohamed, E.F. Kuester, A. Dienstfrey, Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles, IEEE Electromagn. Compat. 47, 853–865 (2005) [CrossRef] [Google Scholar]
  28. C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O'Hara, J. Booth, D.R. Smith, An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. 54, 10–35 (2012) [CrossRef] [Google Scholar]
  29. C. Pfeiffer, A. Grbic, Bianisotropic metasurfaces: ultra-thin surfaces for complete control of electromagnetic wavefronts, Phys. Rev. Applied. 2, 044011 (2014) [CrossRef] [Google Scholar]
  30. F. Monticone, N.M. Estakhri, A. Alù, Full control of nanoscale optical transmission with a composite metascreen, Phys. Rev. Lett. 110, 203903 (2013) [CrossRef] [Google Scholar]
  31. N.M. Estakhri, A. Alù, Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces, IEEE Antennas Propag. 13, 1775–1778 (2014) [CrossRef] [Google Scholar]
  32. N.M. Estakhri, A. Alù, Recent progress in gradient metasurfaces, J. Opt. Soc. Am. B. 33, A21 (2015) [CrossRef] [Google Scholar]
  33. N.M. Estakhri, V. Neder, M.W. Knight, A. Polman, A. Alù, Visible light, wide-angle graded metasurface for back reflection, ACS Photonics. 4, 228–235 (2017) [CrossRef] [Google Scholar]
  34. N. Mohammadi Estakhri, A. Alù, Manipulating optical reflections using engineered nanoscale metasurfaces, Phys. Rev. B. 89, 235419 (2014) [CrossRef] [Google Scholar]
  35. A. Fallahi, J. Perruisseau-Carrier, Design of tunable biperiodic graphene metasurfaces, Phys. Rev. B. 86, 195408 (2012) [CrossRef] [Google Scholar]
  36. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S.N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, A. Alù, Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency, Adv. Material. 27, 1195–1200 (2015) [CrossRef] [Google Scholar]
  37. Y. Zhao, Manipulating light polarization with ultrathin plasmonic metasurfaces, Phys. Rev. B. 84, 205428 (2011) [CrossRef] [Google Scholar]
  38. C. Pfeiffer, A. Grbic, Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets, Phys. Rev. Lett. 110, 197401 (2013) [CrossRef] [Google Scholar]
  39. Y. Ra'di, D.L. Sounas, A. Alù, Metagratings: beyond the limits of graded metasurfaces for wave front control, Phys. Rev. Lett. 119, 067404 (2017) [CrossRef] [Google Scholar]
  40. H. Chalabi, Y. Ra 'di, D.L. Sounas, A. Alù, Efficient anomalous reflection through near-field interactions in metasurfaces, Phys. Rev. B. 96, 075432 (2017) [CrossRef] [Google Scholar]
  41. N. Mohammadi Estakhri, A. Alù, Wave-front transformation with gradient metasurfaces, Phys. Rev. X. 6, 041008 (2016) [Google Scholar]
  42. A. Alù, N.M. Estakhri, C. Argyropoulos, Graded metascreens to enable a new degree of nanoscale light management, Phil. Trans. R. Soc. A. 373, 20140351 (2015) [CrossRef] [Google Scholar]
  43. D.B. Leviton, B.J. Frey, Temperature-dependent absolute refractive index measurements of synthetic fused silica, Conference. Proc. of SPIE, 6273, 62732K (2006) [Google Scholar]
  44. D.B. Leviton, B. J. Frey, Temperature-dependent refractive index of silicon and germanium, Conference. Proc. of SPIE, 6273, 62732J (2006) [Google Scholar]
  45. E.D. Palik, Handbook of optical constants of solids (Academic Press, San diego 1998) [Google Scholar]
  46. J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, H.−W. Schock, ZnO/CdS/Cu(InGa)Se/sub 2/ thin film solar cells with improved performance, IEEE Photovoltaic Specialists Conference, 364 (1993) [Google Scholar]
  47. C. Van Lare, G. Yin, A. Polman, M. Schmid, Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns, ACS Nano. 9, 9603–9613 (2015) [CrossRef] [Google Scholar]
  48. M. Schmid, G. Yin, M. Song, S. Duan, B. Heidmann, D. Sancho-Martinez, S. Kämmer, T. Köhler, P. Manley, Mc. Lux-Steiner, Concentrating light in Cu(In, Ga)Se2 solar cells, Proc. SPIE, 9937, 993703 (2016) [CrossRef] [Google Scholar]
  49. Y. Tak, S. Joon Hong, J. Sung Lee, K. Yong, Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion, J. Mat. Chem. 19, 5945–5951 (2009) [CrossRef] [Google Scholar]
  50. G. Yin, A. Steigert, P. Andrae, M. Goebelt, M. Latzel, P. Manley, I. Lauermann, S. Christiansen, M. Schmid, Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se2 solar cells, Appl. Surf. Sci. 355, 800–804 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.