Issue
EPJ Appl. Metamat.
Volume 5, 2018
Metamaterials'2017 – Metamaterials and Novel Wave Phenomena: Theory, Design and Application
Article Number 3
Number of page(s) 15
DOI https://doi.org/10.1051/epjam/2017010
Published online 06 March 2018
  1. D. Sievenpiper, High-Impedance Electromagnetic Surfaces, Ph.D. dissertation, (Dept. Elect. Eng., Univ. California, Los Angeles, Los Angeles, CA, USA, 1999). [Google Scholar]
  2. S. Tretyakov, Analytical modeling in applied electromagnetics, (Artech House, Boston, 2003). [Google Scholar]
  3. O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A.V. Risnen, S.A. Tretyakov, Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches, IEEE Trans. Antennas Propag. 56, 1624 (2008). [CrossRef] [Google Scholar]
  4. R. Rodrigues-Berral, F. Medina, F. Mesa, M.G. Vigueras, Quasi-analytical modeling of transmission/reflection in strips/slit gratings loaded with dielectric slabs, IEEE Trans. Microw Theory Tech. 60, 405 (2012). [CrossRef] [Google Scholar]
  5. Y. Fan, Y. Rahmat-Samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEEE Trans. Antennas Propag. 51, 2691 (2003). [CrossRef] [Google Scholar]
  6. C.A. Balanis, Advanced engineering electromagnetics, 2nd ed, (Wiley, New York, 2012). [Google Scholar]
  7. A. Vallecchi, J.R. De Luis, F. Capolino, F. De Flaviis, Low profile fully planar folded dipole antenna on a high impedance surface, IEEE Trans. Antennas Propag. 60, 51 (2012). [CrossRef] [Google Scholar]
  8. N. Engheta, Thin absorbing screens using metamaterial surfaces, Proc. IEEE Antennas Propag. Soc. Int. Symp. 2, 392 (2002). [CrossRef] [Google Scholar]
  9. M. Paquay, J.C. Iriarte, I. Ederra, R. Gonzalo, P. de Maagt, Thin AMC structure for radar cross-section reduction, IEEE Trans. Antennas Propag. 55, 3630 (2007). [CrossRef] [Google Scholar]
  10. W. Chen, C.A. Balanis, C.R. Birtcher, Checkerboard EBG surfaces for wideband radar cross section reduction, IEEE Trans. Antennas Propag. 63, 2636 (2015). [CrossRef] [Google Scholar]
  11. A.Y. Modi, C.A. Balanis, C.R. Birtcher, H. Shaman, Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors, IEEE Trans. Antennas Propag. 65, 5406 (2017). [CrossRef] [Google Scholar]
  12. W. Chen, C.A. Balanis, C.R. Birtcher, Dual wide-band checkerboard surfaces for radar cross section reduction, IEEE Trans. Antennas Propag. 64, 4133 (2016). [CrossRef] [Google Scholar]
  13. W. Chen, C. A. Balanis, C.R. Birtcher, Dual frequency band RCS reduction using checkerboard surfaces, Proc. of IEEE Int. Symp. Antennas Propag., San Diego, CA, 2017, pp. 1913–1914. [Google Scholar]
  14. A.Y. Modi, C.A. Balanis, C. Birtcher, AMC cells for broadband RCS reduction checkerboard surfaces, Proc. of IEEE Int. Symp. Antennas Propag., San Diego, CA, 2017, pp. 1911–1912. [Google Scholar]
  15. A.Y. Modi, C.A. Balanis, C. Birtcher, Novel technique for enhancing RCS reduction bandwidth of checkerboard surfaces, Proc. of IEEE Int. Symp. Antennas Propag., San Diego, CA, 2017, pp. 1915–1916. [Google Scholar]
  16. M.Z. Azad, M. Ali, Novel wideband directional dipole antenna on a mushroom like EBG structure, IEEE Trans. Antennas Propag. 56, 1242 (2008). [CrossRef] [Google Scholar]
  17. L. Akhoondzadeh-Asl, D.J. Kern, P.S. Hall, D.H. Werner, Wideband dipoles on electromagnetic bandgap ground planes, IEEE Trans. Antennas Propag. 55, 2426 (2007). [CrossRef] [Google Scholar]
  18. H. Mosallaei, K. Sarabandi, Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate, IEEE Trans. Antennas Propag. 52, 2403 (2004). [CrossRef] [Google Scholar]
  19. D.J. Kern, D.H. Werner, A. Monorchio, L. Lanuzza, M.J. Wilhelm, The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces, IEEE Trans. Antennas Propag. 53, 8 (2005). [CrossRef] [Google Scholar]
  20. D.J. Kern, D.H. Werner, A. Monorchio, L. Lanuzza, M.J. Wilhelm, Reconfigurable ultra-thin EBG absorbers using conducting polymers, Antennas and Propagation Society International Symposium(APSURSI), 2005 IEEE, 2B, 2005, pp. 204–217. [Google Scholar]
  21. A.C. Durgun, C.A. Balanis C.R. Birtcher, Reflection phase characterization of curved high impedance surfaces, IEEE Trans. Antennas Propag. 61, 6030 (2013). [CrossRef] [Google Scholar]
  22. J. Sarrazin, A.C. Lepage, X. Begaud, Circular high-impedance surfaces characterization, IEEE Lett. Antennas Wirel. Propag. 11, 260 (2012). [CrossRef] [Google Scholar]
  23. N. Llombart, A. Neto, G. Gerini, Planar circularly symmetric EBG structures for reducing surface waves in printed antennas, IEEE Trans. Antennas Propag. 53, 3210 (2005). [CrossRef] [Google Scholar]
  24. A. Neto, N. Llombart, G. Gerini, P. de Maagt, On the omptimal radiation bandwidth of printed slot antennas surrounded by EBGs, IEEE Trans. Antennas Propag. 54, 1074 (2006). [CrossRef] [Google Scholar]
  25. M. Ettore, S. Bruni, G. Gerini, A. Neto, N. Llombart, S. Maci, Sector PCS-EG antenna for low-cost high-directivity applications, IEEE Lett. Antennas Wirel. Propag. 6, 537 (2007). [CrossRef] [Google Scholar]
  26. M. SalarRahimi, J. Rashed-Mohassel, M. Edalatipour, Radiation properties enhancement of a GSM/WLAN microstrip antenna using a dual band circularly symmetric EBG substrate, IEEE Trans. Antennas Propag. 60, 5491 (2012). [CrossRef] [Google Scholar]
  27. T.A. Dendini, Y. Coulibaly, H. Boutayeb, Hybrid dielectric resonator antenna with circular mushroom-like structure for gain improvement, IEEE Trans. Antennas Propag. 57, 1043 (2009). [CrossRef] [Google Scholar]
  28. M.A. Amiri, C.A. Balanis, C.R. Birtcher, Analysis, design and measurements of circularly symmetric high impedance surfaces for loop antenna applications, IEEE Trans. Antennas Propag. 64, 618 (2015). [CrossRef] [Google Scholar]
  29. M.A. Amiri, C.A. Balanis, C.R. Birtcher, Gain and bandwidth enhancement of spiral antenna using circularly symmetric HIS, IEEE Lett. Antennas Wirel. Propag. 16, 1080 (2017). [CrossRef] [Google Scholar]
  30. B.H. Fong, J.S. Colburn, J.J. Ottusch, J.L. Visher, D.F. Sievenpiper, Scalar and tensor holographic artificial impedance surfaces, IEEE Trans. Antennas Propag. 58, 3212 (2010). [CrossRef] [Google Scholar]
  31. A.M. Patel, A. Grbic, A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface, IEEE Trans. Antennas Propag. 59, 2087 (2011). [CrossRef] [Google Scholar]
  32. S. Maci, G. Minatti, M. Casaletti, M. Bosiljevac, Metasurfing: addressing waves on impenetrable metasurfaces, IEEE Antennas Wireless Propag. Lett. 10, 1499 (2011). [CrossRef] [Google Scholar]
  33. S. Pandi, C.A. Balanis, C.R. Birtcher, Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization, IEEE Trans. Antennas Propag. 63, 3016 (2015). [CrossRef] [Google Scholar]
  34. G. Minatti, S. Maci, P. De Vita, A. Freni, M. Sabbadini, A circularly-polarized isoflux antenna based on anisotropic metasurface, IEEE Trans. Antennas Propag. 60, 4998 (2012). [CrossRef] [Google Scholar]
  35. R. Quarfoth, D. Sievenpiper, Artificial tensor impedance wave-guides, IEEE Trans. Antennas Propag. 61, 3597 (2013). [CrossRef] [Google Scholar]
  36. C.A. Balanis, Antenna theory: analysis design, 4th ed., (Wiley, Hoboken, NJ, USA, 2016). [Google Scholar]
  37. M.A. Amiri, C. Balanis, C. Birtcher, Notable gain enhancement of curvilinear elements using a circular HIS ground plane, Proc. of IEEE Int. Symp. Antennas Propag. San Diego, CA, 2017, pp. 1671–1672. [Google Scholar]
  38. S. Pandi, C.A. Balanis, Antenna beam forming using holographic artificial impedance surface, Antenna Technol. Appl. Electromagn. (ANTEM), Victoria, BC, 2014, pp. 1–2. [Google Scholar]
  39. O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A.V. Risnen, S.A. Tretyakov, Simple accurate analytical model of planar grids high-impedance surfaces comprising metal strips patches, IEEE Trans. Antennas Propag. 56, 1624 (2008). [CrossRef] [Google Scholar]
  40. A.M. Patel, Controlling electromagnetic surface waves with scalar tensor impedance surfaces, Ph.D. dissertation, (Department of Electrical Engineering, The University of Michigan, Ann Arbor, MI, 2013). [Google Scholar]
  41. A.A. Oliner, A. Hessel, Guided waves on sinusoidally-modulated reactance surfaces, IRE Trans. Antennas Propag. 7, 201 (1959). [CrossRef] [Google Scholar]
  42. S. Pandi, C.A. Balanis, C.R. Birtcher, Analysis of wideband multilayered sinusoidally modulated metasurface, IEEE Antennas Wirel. Propag. Lett. 15, 1491 (2016). [CrossRef] [Google Scholar]
  43. S. Pandi, C.A. Balanis, C.R. Birtcher, Curvature modeling in design of circumferentially modulated cylindrical metasurface LWA, IEEE Antennas Wirel. Propag. Lett. 16, 1024 (2016). [CrossRef] [Google Scholar]
  44. S. Pandi, S. Ramalingam, C.A. Balanis, C.R. Birtcher, Bandwidth analysis of phase crossover non-phase crossover frequency operations of HAIS, IEEE Antennas and Propagation International Symposium, San Diego, CA, 2017, pp. 287–288. [Google Scholar]
  45. S. Ramalingam, S. Pandi, C.A. Balanis, C.R. Birtcher, Axial and circumferential modulation of cylindrical metasurfaces, 2017 IEEE Antennas and Propagation International Symposium, San Diego, CA, 2017, pp. 279–280. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.