EPJ Appl. Metamat.
Volume 4, 2017
Artificial materials for advanced applications in electromagnetics and mechanics
Article Number 2
Number of page(s) 7
Published online 13 January 2017
  1. Z. Li, M. Mutlu, E. Ozbay, Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission, J. Opt. 15 (2013) 023001. [CrossRef] [Google Scholar]
  2. G. Kenanakis, E.N. Economou, C.M. Soukoulis, M. Kafesaki, Controlling THz and far-IR waves with chiral and bianisotropic metamaterials, EPJ Appl. Metamat. 2 (2015) 15. [CrossRef] [EDP Sciences] [Google Scholar]
  3. L.R. Arnaut, Chirality in multi-dimensional space with application to electromagnetic characterisation of multi-dimensional chiral and semi-chiral media, J. Electromagn. Waves Appl. 11 (1997) 1459–1482. [CrossRef] [Google Scholar]
  4. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, Giant optical activity in quasi-two-dimensional planar nanostructures, Phys. Rev. Lett. 95 (2005) 227401. [CrossRef] [PubMed] [Google Scholar]
  5. L. Hecht, L.D. Barron, Rayleigh and Raman optical activity from chiral surfaces, Chem. Phys. Lett. 225 (1994) 525–530. [CrossRef] [Google Scholar]
  6. A. Papakostas, A. Potts, D.M. Bagnall, S.L. Prosvirnin, H.J. Coles, N.I. Zheludev, Optical manifestations of planar chirality, Phys. Rev. Lett. 90 (2003) 107404. [CrossRef] [Google Scholar]
  7. S.L. Prosvirnin, N.I. Zheludev, Polarization effects in the diffraction of light by a planar chiral structure, Phys. Rev. E 71 (2005) 037603. [CrossRef] [Google Scholar]
  8. V.A. Fedotov, P.L. Mladyonov, S.L. Prosvirnin, A.V. Rogacheva, Y. Chen, N.I. Zheludev, Asymmetric propagation of electromagnetic waves through a planar chiral structure, Phys. Rev. Lett. 97 (2006) 167401. [CrossRef] [Google Scholar]
  9. E. Plum, V.A. Fedotov, N.I. Zheludev, Planar metamaterial with transmission and reflection that depend on the direction of incidence, Appl. Phys. Lett. 94 (2009) 131901. [CrossRef] [Google Scholar]
  10. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A.K. Azad, R.A. Cheville, F. Lederer, W. Zhang, N.I. Zheludev, Terahertz metamaterial with asymmetric transmission, Phys. Rev. B 80 (2009) 153104. [CrossRef] [Google Scholar]
  11. A.S. Schwanecke, V.A. Fedotov, V.V. Khardikov, S.L. Prosvirnin, Y. Chen, N.I. Zheludev, Nanostructured metal film with asymmetric optical transmission, Nano Lett. 8 (2008) 2940–2943. [CrossRef] [PubMed] [Google Scholar]
  12. C. Menzel, C. Helgert, C. Rockstuhl, E.B. Kley, A. Tünnermann, T. Pertsch, F. Lederer, Asymmetric transmission of linearly polarized light at optical metamaterials, Phys. Rev. Lett. 104 (2010) 253902. [CrossRef] [Google Scholar]
  13. N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices, Nat. Mater. 11 (2012) 917–924. [CrossRef] [Google Scholar]
  14. A.M. Shaltout, A.V. Kildishev, V.M. Shalaev, Evolution of photonic metasurfaces: from static to dynamic, J. Opt. Soc. Am. B 33 (2016) 501–510. [CrossRef] [Google Scholar]
  15. N. Kanda, K. Konishi, M. Kuwata-Gonokami, Light-induced terahertz optical activity, Opt. Lett. 34 (2009) 3000–3002. [CrossRef] [Google Scholar]
  16. J. Zhou, D.R. Chowdhury, R. Zhao, A.K. Azad, H.-T. Chen, C.M. Soukoulis, A.J. Taylor, J.F. O’Hara, Terahertz chiral metamaterials with giant and dynamically tunable optical activity, Phys. Rev. B 86 (2012) 035448. [CrossRef] [Google Scholar]
  17. S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A.K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, X. Zhang, Photoinduced handedness switching in terahertz chiral metamolecules, Nat. Commun. 3 (2012) 942. [CrossRef] [Google Scholar]
  18. N. Kanda, K. Konishi, M. Kuwata-Gonokami, All-photoinduced terahertz optical activity, Opt. Lett. 39 (2014) 3274–3277. [CrossRef] [Google Scholar]
  19. G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C.M. Soukoulis, E.N. Economou, Optically controllable THz chiral metamaterials, Opt. Express 22 (2014) 12149–12159. [CrossRef] [Google Scholar]
  20. T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, K. Matsumoto, I. Shimoyama, Spiral metamaterial for active tuning of optical activity, Appl. Phys. Lett. 102 (2013) 221906. [CrossRef] [Google Scholar]
  21. T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, I. Shimoyama, Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals, Nat. Commun. 6 (2015) 8422. [CrossRef] [Google Scholar]
  22. X. Yin, M. Schäferling, A.-K.U. Michel, A. Tittl, M. Wuttig, T. Taubner, H. Giessen, Active chiral plasmonics, Nano Lett. 15 (2015) 4255–4260. [CrossRef] [Google Scholar]
  23. R.C. Compton, J.C. Macfarlane, L.B. Whitbourn, M.M. Blanco, R.C. McPhedran, Babinet’s principle applied to ideal beam-splitters for submillimetre waves, Opt. Acta 31 (1984) 515–524. [CrossRef] [Google Scholar]
  24. K. Kempa, Percolation effects in the checkerboard Babinet series of metamaterial structures, Phys. Status Solidi Rapid Res. Lett. 4 (2010) 218–220. [CrossRef] [Google Scholar]
  25. J.D. Edmunds, A.P. Hibbins, J.R. Sambles, I.J. Youngs, Resonantly inverted microwave transmissivity threshold of metal grids, New J. Phys. 12 (2010) 063007. [CrossRef] [Google Scholar]
  26. S.A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, S. Guenneau, Plasmonic interaction of visible light with gold nanoscale checkerboards, Phys. Rev. B 84 (2011) 245424. [CrossRef] [Google Scholar]
  27. K. Takano, F. Miyamaru, K. Akiyama, H. Miyazaki, M.W. Takeda, Y. Abe, Y. Tokuda, H. Ito, M. Hangyo, Crossover from capacitive to inductive electromagnetic responses in near self-complementary metallic checkerboard patterns, Opt. Express 22 (2014) 24787–24795. [CrossRef] [Google Scholar]
  28. D. González-Ovejero, E. Martini, S. Maci, Surface waves supported by metasurfaces with self-complementary geometries, IEEE Trans. Antennas Propag. 63 (2015) 250–260. [CrossRef] [Google Scholar]
  29. B. Tremain, C.J. Durrant, I.E. Carter, A.P. Hibbins, J.R. Sambles, The effect of rotational disorder on the microwave transmission of checkerboard metal square arrays, Sci. Rep. 5 (2015) 16608. [CrossRef] [Google Scholar]
  30. Y. Nakata, Y. Urade, T. Nakanishi, M. Kitano, Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle, Phys. Rev. B 88 (2013) 205138. [CrossRef] [Google Scholar]
  31. Y. Urade, Y. Nakata, T. Nakanishi, M. Kitano, Frequency-independent response of self-complementary checkerboard screens, Phys. Rev. Lett. 114 (2015) 237401. [CrossRef] [Google Scholar]
  32. Y. Urade, Y. Nakata, T. Nakanishi, M. Kitano, Broadband and energy-concentrating terahertz coherent perfect absorber based on a self-complementary metasurface, Opt. Lett. 41 (2016) 4472–4475. [CrossRef] [Google Scholar]
  33. Y. Urade, Y. Nakata, K. Okimura, T. Nakanishi, F. Miyamaru, M.W. Takeda, M. Kitano, Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition, Opt. Express 24 (2016) 4405–4410. [CrossRef] [Google Scholar]
  34. Y. Nakata, Y. Urade, K. Okimura, T. Nakanishi, F. Miyamaru, M.W. Takeda, M. Kitano, Anisotropic Babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light, Phys. Rev. Applied 6 (2016) 044022. [CrossRef] [Google Scholar]
  35. R. Zhao, L. Zhang, J. Zhou, Th Koschny, C.M. Soukoulis, Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index, Phys. Rev. B 83 (2011) 035105. [CrossRef] [Google Scholar]
  36. B. Kang, K. Takano, M. Hangyo, Asymmetric transmission of planar chiral THz metamaterials for circularly polarized light, in 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, 2013. [Google Scholar]
  37. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S.N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, A. Alù, Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency, Adv. Mater. 27 (2015) 1195–1200. [Google Scholar]
  38. D. Grischkowsky, S. Keiding, M. van Exter, Ch Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors, J. Opt. Soc. Am. B 7 (1990) 2006. [Google Scholar]
  39. N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C.M. Soukoulis, Optically implemented broadband blueshift switch in the terahertz regime, Phys. Rev. Lett. 106 (2011) 037403. [CrossRef] [PubMed] [Google Scholar]
  40. P. Tassin, T. Koschny, C.M. Soukoulis, Effective material parameter retrieval for thin sheets: theory and application to graphene, thin silver films, and single-layer metamaterials, Physica B 407 (2012) 4062–4065. [CrossRef] [Google Scholar]
  41. C. Pfeiffer, A. Grbic, Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis, Phys. Rev. Applied 2 (2014) 044011. [Google Scholar]
  42. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures, Rev. Mod. Phys. 82 (2010) 2257–2298. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.