Issue
EPJ Appl. Metamat.
Volume 4, 2017
Artificial materials for advanced applications in electromagnetics and mechanics
Article Number 3
Number of page(s) 13
DOI https://doi.org/10.1051/epjam/2016014
Published online 13 January 2017
  1. S. Tibuleac, R. Magnusson, T.A. Maldonado, P.P. Young, T.R. Holzheimer, Dielectric frequency-selective structures incorporating waveguide gratings, IEEE Trans. Microwave Theory Tech. 48 (2000) 553–561. [CrossRef] [Google Scholar]
  2. S.S. Wang, R. Magnusson, Design of waveguide grating filters with symmetrical line shapes and low sidebands, Opt. Lett. 19 (1994) 919–921. [CrossRef] [Google Scholar]
  3. S.M. Norton, T. Erdogan, G.M. Morris, Coupled mode theory of resonant-grating filters, J. Opt. Soc. Am. A 14 (1997) 629–639. [CrossRef] [Google Scholar]
  4. J. Turunen, F. Wyrowski (Eds.), Diffractive optics for industrial and commercial applications, Chap. 12, Akademie, Berlin, 1997. [Google Scholar]
  5. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburr, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334 (2011) 333–337. [CrossRef] [PubMed] [Google Scholar]
  6. X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Broadband light bending with plasmonic nanoantennas, Science 335 (2011) 427. [CrossRef] [PubMed] [Google Scholar]
  7. C. Argyropoulos, G. D’Aguanno, N. Mattiucci, N. Akozbek, M.J. Bloemer, A. Alù, Matching and funneling light at the plasmonic Brewster angle, Phys. Rev. B 85 (2012) 024304. [CrossRef] [Google Scholar]
  8. F. Monticone, N.M. Estakhri, A. Alù, Full control of nanoscale optical transmission with a composite metascreen, Phys. Rev. Lett. 110 (2013) 203903. [CrossRef] [Google Scholar]
  9. N.M. Estakhri, C. Argyropoulos, A. Alù, Graded metascreens to enable a new degree of nanoscale light management, Phil. Trans. R. Soc. A 373 (2015) 20140351. [Google Scholar]
  10. Y.-J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N.M. Jokerst, D.R. Smith, Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths, Optics Express 19 (2011) 24411–24423. [CrossRef] [Google Scholar]
  11. Y. Cui, et al., Plasmonic and metamaterial structures as electromagnetic absorbers, Laser Photon. Rev. 8 (2014) 495–520. [CrossRef] [Google Scholar]
  12. A.A. Darweesh, S.J. Bauman, J.B. Herzog, Improved optical enhancement using double-width plasmonic gratings with nanogaps, Photon. Research 4 (2016) 173–180. [CrossRef] [Google Scholar]
  13. S. Jahani, Z. Jacob, All-dielectric metamaterials, Nature Nanotechnol. 11 (2016) 23–36. [Google Scholar]
  14. D. Ohana, U. Levy, Mode conversion based on dielectric metamaterial in silicon, Optics Express 22 (2014) 27617–27631. [CrossRef] [Google Scholar]
  15. L. Zhu, J. Kapraun, J. Ferrara, C.J. Chang-Hasnain, Flexible photonic metastructures for tunable coloration, Optica 2 (2015) 255–258. [CrossRef] [Google Scholar]
  16. S. Miyanaga, T. Akasura, Intensity profiles of outgoing beams from tapered grating couplers, Radio Sci. 17 (1982) 135–143. [CrossRef] [Google Scholar]
  17. M.G. Moharam, E.B. Grann, D.A. Pommet, T.K. Gaylord, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings, J. Opt. Soc. Am. A 12 (1995) 1068–1076. [CrossRef] [Google Scholar]
  18. R.S. Chu, J.A. Kong, Modal theory of spatially periodic media, IEEE Trans. Microwave Theory Tech. MTT-25 (1977) 18–24. [CrossRef] [Google Scholar]
  19. M.R. Zunoubi, H.A. Kalhor, Diffraction of electromagnetic waves by periodic arrays of rectangular cylinders, J. Opt. Soc. Am. A 23 (2006) 306–313. [CrossRef] [Google Scholar]
  20. Y. Nakata, M. Koshiba, Boundary-element analysis of plane-wave diffraction from groove-type dielectric and metallic gratings, J. Opt. Soc. Am. A 7 (1990) 1494–1502. [CrossRef] [Google Scholar]
  21. G. Athanasoulias, N.K. Uzunoglu, An accurate and efficient entire-domain basis Galerkin’s method for the integral equation analysis of integrated rectangular dielectric waveguides, IEEE Trans. Microwave Theory Tech. 43 (1995) 2794–2804. [CrossRef] [Google Scholar]
  22. N.L. Tsitsas, N.K. Uzunoglu, D.I. Kaklamani, Diffraction of plane waves incident on a grated dielectric slab: An entire domain integral equation analysis, Radio Sci. 42 (2007) RS6S22. [CrossRef] [Google Scholar]
  23. N.L. Tsitsas, D.I. Kaklamani, N.K. Uzunoglu, Rigorous integral equation analysis of nonsymmetric coupled grating slab waveguides, J. Opt. Soc. Am. A 23 (2006) 2888–2905. [CrossRef] [Google Scholar]
  24. M. Weber, D.L. Mills, Interaction of electromagnetic waves with periodic gratings: Enhanced fields and the reflectivity, Phys. Rev. B 27 (1983) 2698–2709. [CrossRef] [Google Scholar]
  25. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Part I, McGraw-Hill, Tokyo, 1953. [Google Scholar]
  26. R.E. Collin, Field theory of guided waves, IEEE Press, New York, 1991. [Google Scholar]
  27. D.M. Pai, K.A. Awada, Analysis of dielectric gratings of arbitrary profiles and thicknesses, J. Opt. Soc. Am. A 8 (1991) 755–762. [CrossRef] [Google Scholar]
  28. R.H. Morf, Exponentially convergent and numerically efficient solution of Maxwell’s equations for lamellar gratings, J. Opt. Soc. Am. A 12 (1995) 1043–1056. [CrossRef] [Google Scholar]
  29. H.L. Bertoni, L.-H.S. Cheo, T. Tamir, Frequency-selective reflection and transmission by a periodic dielectric layer, IEEE Trans. Antennas Propagat. 37 (1989) 78–83. [CrossRef] [Google Scholar]
  30. M.G. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials, Phys. Rev. Lett. 97 (2006) 157403. [CrossRef] [PubMed] [Google Scholar]
  31. A. Alù, M.G. Silveirinha, A. Salandrino, N. Engheta, Epsilon near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern, Phys. Rev. B 75 (2007) 155410. [CrossRef] [Google Scholar]
  32. R. Liu, Q. Cheng, T. Hand, J.J. Mock, T.J. Cui, S.A. Cummer, D.R. Smith, Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies, Phys. Rev. Lett. 100 (2008) 023903. [CrossRef] [PubMed] [Google Scholar]
  33. A. Coves, B. Gimeno, J. Gil, M.V. Andrés, A.A. San Blas, V.E. Boria, Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method, IEEE Trans. Antennas Propagat. 52 (2004) 2091–2099. [CrossRef] [Google Scholar]
  34. A. Sommerfeld, Partial differential equations in physics, Academic Press, New York, 1949. [Google Scholar]
  35. C.T. Tai, Dyadic Green’s functions in electromagnetic theory. 2nd ed., IEEE Press, New York, 1994. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.