Open Access
Issue
EPJ Applied Metamaterials
Volume 1, 2014
Article Number 5
Number of page(s) 9
DOI https://doi.org/10.1051/epjam/2014004
Published online 08 July 2014
  1. J.C. Bose, On the rotation of plane of polarisation of electric waves by a twisted structure, Proc. Royal Society 63 (1898) 146–152. [CrossRef] [Google Scholar]
  2. I.V. Lindell, A.H. Sihvola, J. Kurkijarvi, Karl F. Lindman: The last Hertzian, and a harbinger of electromagnetic chirality, IEEE Antennas Propag. Mag. 34, 3 (1992) 24–30. [CrossRef] [Google Scholar]
  3. W.E. Kock, Metallic delay lenses, Bell Syst. Tech. J. 27 (1948) 58–82. [CrossRef] [Google Scholar]
  4. W. Rotman, Plasma simulation by artificial dielectrics and parallel-plate media, IRE Trans. Antennas Propag. 10 (1962) 82–95. [CrossRef] [Google Scholar]
  5. N. Engheta (Guest Ed.), Wave interactions with chiral and complex media, Special Issue of the J. Electromagn. Waves Appl. 6, 5/6 (1992). [Google Scholar]
  6. R.W. Ziolkowski, F. Auzanneau, Artificial molecule realization of a magnetic wall, J. Appl. Phys. 82, 7 (1997) 3192–3194. [CrossRef] [Google Scholar]
  7. R.W. Ziolkowski, F. Auzanneau, Passive artificial molecule realizations of dielectric materials, J. Appl. Phys. 82, 7 (1997) 3195–3198. [CrossRef] [Google Scholar]
  8. F. Auzanneau, R.W. Ziolkowski, Theoretical study of synthetic bianisotropic materials, J. Electromagn. Waves Appl. 12, 3 (1998) 353–370. [CrossRef] [Google Scholar]
  9. F. Auzanneau, R.W. Ziolkowski, Microwave signal rectification using artificial composite materials composed of diode loaded, electrically small dipole antennas, IEEE Trans. Microwave Theor. Tech. 46, 11 (1998) 1628–1637. [CrossRef] [Google Scholar]
  10. F. Auzanneau, R.W. Ziolkowski, Explicit matrix formulation for the analysis of synthetic linearly and nonlinearly loaded materials in FDTD, J. Electromagn. Waves Appl. 13 (1999) 1509–1510; Progress in Electromagnetics Research, PIER 24, 139–161, 1999. [CrossRef] [Google Scholar]
  11. F. Auzanneau, R.W. Ziolkowski, Artificial composite materials consisting of linearly and nonlinearly loaded electrically small antennas: operational amplifier based circuits with applications to smart skins, IEEE Trans. Antennas Propag. 47 8 (1999) 1330–1339. [CrossRef] [Google Scholar]
  12. R.W. Ziolkowski, The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials, IEEE Antennas Propag. 45, 4 (1997) 656–671. [CrossRef] [Google Scholar]
  13. R.W. Ziolkowski, Time derivative Lorentz-materials and their utilization as electromagnetic absorbers, Phys. Rev. E 55, 6 (1997) 7696–7703. [CrossRef] [Google Scholar]
  14. R.W. Ziolkowski, Time derivative Lorentz-material based absorbing boundary conditions, IEEE Antennas Propag. 45, 10 (1997) 1530–1535. [CrossRef] [Google Scholar]
  15. D.C. Wittwer, R.W. Ziolkowski, Two time-derivative Lorentz material (2TDLM) formulation of a Maxwellian absorbing layer matched to a lossy media, IEEE Trans. Antennas Propag. 48, 2 (2000) 192–199. [CrossRef] [Google Scholar]
  16. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994) 185–200. [Google Scholar]
  17. R.M. Walser, Electromagnetic metamaterials, in Proc. SPIE 4467 Complex Mediums II: Beyond Linear Isotropic Dielectrics, 1, San Diego, CA, 2001, pp. 1–15. [Google Scholar]
  18. Speakers included: Roger Walser (UT Austin), RM Dickinson (JPL), Eli Yablonovich (UCLA), Ananth Dodabalapur (Lucent), George Whitesides (Harvard), Nick Alexopolus (UC Irvine), Will McKenzie (Atlantic Aerospace), Rick Ziolkowski (U Arizona) and Akhlesh Lakhtakia (Penn State U). [Google Scholar]
  19. Speakers included: Ken Suslick (U Illinois), Bruce Dunn (Penn State U), Ray Baughman (Allied Signals), Chris Murray (IBM), Mike Cima (MIT), Steve Chou (Princeton), and John Halloran (U Michigan). [Google Scholar]
  20. Team Members included: Xiang Zhang (PI, UC Berkeley), Eli Yablonovitch and Tasuo Itoh (UCLA), Sheldon Schultz and David R. Smith (UCSD), Gang Chen and John Joannopoulus (MIT) and John Pendry (Imperial College); http://xlab.me.berkeley.edu/MURI/muri.html [Google Scholar]
  21. http://archive.darpa.mil/DARPATech2002/presentations/dso_pdf/speeches/BROWNING.pdf [Google Scholar]
  22. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 18 (2000) 4184–4187. [CrossRef] [PubMed] [Google Scholar]
  23. D.R. Smith, N. Kroll, Negative refractive index in left-handed materials, Phys. Rev. Lett. 85, 14 (2000) 2933–2936. [CrossRef] [PubMed] [Google Scholar]
  24. R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser, S. Schultz, Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial, Appl. Phys. Lett. 78, 4 (2001) 489–491. [CrossRef] [Google Scholar]
  25. A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292, 5514 (2001) 77–79. [CrossRef] [PubMed] [Google Scholar]
  26. J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 18 (2000) 3966–3969. [CrossRef] [PubMed] [Google Scholar]
  27. R.W. Ziolkowski, E. Heyman, Wave propagation in media having negative permittivity and permeability, Phys. Rev. E 64 (2001) 056625. [CrossRef] [Google Scholar]
  28. A. Scherer, T. Doll, E. Yablonovich, H. Everitt, A. Higgins (Guest Eds.), Focus Issue: Artificial and Metallodielectric Electromagnetic Crystals, IEEE Trans. Microwave Theor. Tech., 47, 11 (1999) [Google Scholar]
  29. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theor. Tech., 47, 11 (1999) 2075–2081. [Google Scholar]
  30. D. Sievenpiper, L. Zhang, R. Broas, N.G. Alexopolous, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microwave Theor. Tech. 47, 11 (1999) 2059–2074. [Google Scholar]
  31. R. Coccioli, F.-R. Yang, K.-P. Ma, T. Itoh, Aperture-coupled patch antenna on UC-PBG substrate, IEEE Trans. Microwave Theor. Tech. 47, 11 (1999) 2123–2130. [CrossRef] [Google Scholar]
  32. F.-R. Yang, K.-P. Ma, Y. Qian, T. Itoh, A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure, IEEE Trans. Microwave Theor. Tech. 47, 11 (1999) 2092–2098. [CrossRef] [Google Scholar]
  33. J. Pendry (Guest Eds.), OSA Focus Issue: Negative Refraction and Metamaterials, Opt. Express 11, 7 (2003) [Google Scholar]
  34. P. Kolinko, D. Smith, Numerical study of electromagnetic waves interacting with negative index materials, Opt. Express 11, 7 (2003) 640–648. [CrossRef] [Google Scholar]
  35. P. Markos, C. Soukoulis, Transmission properties and effective electromagnetic parameters of double negative metamaterials, Opt. Express 11, 7 (2003) 649–661. [CrossRef] [PubMed] [Google Scholar]
  36. R.W. Ziolkowski, Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs, Opt. Express 11, 7 (2003) 662–681. [CrossRef] [Google Scholar]
  37. N. Fang, Z. Liu, T.-J. Yen, X. Zhang, Regenerating evanescent waves from a silver superlens, Opt. Express 11, 7 (2003) 649–661. [CrossRef] [PubMed] [Google Scholar]
  38. R. Greegor, C. Parazzoli, K. Li, B. Koltenbah, M. Tanielian, Experimental determination and numerical simulation of the properties of negative index of refraction materials, Opt. Express 11, 7 (2003) 688–695. [CrossRef] [Google Scholar]
  39. A. Lakhtakia, Handedness reversal of circular Bragg phenomenon due to negative real permittivity and permeability, Opt. Express 11, 7 (2003) 716–722. [CrossRef] [Google Scholar]
  40. J. Lu, T. Grzegorczyk, Y. Zhang, J. Pacheco Jr, B.-I. Wu, J. Kong, M. Chen, Čerenkov radiation in materials with negative permittivity and permeability, Opt. Express 11, 7 (2003) 723–734. [CrossRef] [Google Scholar]
  41. V. Podolskiy, A. Sarychev, V. Shalaev, Plasmon modes and negative refraction in metal nanowire composites, Opt. Express 11, 7 (2003) 735–745. [CrossRef] [Google Scholar]
  42. C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Negative refraction without negative index in metallic photonic crystals, Opt. Express 11, 7 (2003) 746–754. [Google Scholar]
  43. S. Linden, C. Enkrich, M. Wegener, J. Zhou, Th. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 terahertz, Science 306, 5700 (2004) 1351–1353. [CrossRef] [PubMed] [Google Scholar]
  44. C.M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths, Science 315, 5808 (2007) 47–49. [CrossRef] [PubMed] [Google Scholar]
  45. C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials, Nature Photon. 5 (2011) 523–530. [Google Scholar]
  46. S. Linden, C. Enkrich, G. Dolling, M.W. Klein, J. Zhou, Th. Koschny, C.M. Soukoulis, S. Burger, F. Schmidt, M. Wegener, Photonic metamaterials: magnetism at optical frequencies, IEEE J. Sel. Top. Quantum Electron. 12, 6 (2006) 1097–1105. [CrossRef] [Google Scholar]
  47. J. Zhou, L. Zhang, G. Tuttle, Th. Koschny, C.M. Soukoulis, Negative index materials using simple short wire pairs, Phys. Rev. B 73 (2006) 041101(R). [CrossRef] [Google Scholar]
  48. S. Zhang, W. Fan, K.J. Malloy, S.R.J. Brueck, N.C. Panoiu, R.M. Osgood, Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies, J. Opt. Soc. Am. B 23, 3 (2006) 434–438. [CrossRef] [Google Scholar]
  49. G. Dolling, M. Wegener, C.M. Soukoulis, S. Linden, Negative-index metamaterial at 780 nm wavelength, Opt. Lett. 32, 1 (2007) 53–55. [CrossRef] [Google Scholar]
  50. V.M. Shalaev, Optical negative-index metamaterials, Nature Photon. 1 (2007) 41–48. [CrossRef] [Google Scholar]
  51. U.K. Chettiar, A.V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V.P. Drachev, V.M. Shalaev, Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm, Opt. Lett. 32, 12 (2007) 1671–1673. [CrossRef] [Google Scholar]
  52. V.M. Shalaev, A. Boardman, Focus issue on Metamaterials, J. Opt. Soc. Am. B 23, 3 (2006)386–387. [CrossRef] [Google Scholar]
  53. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens, Science 308 (2005) 534–537. [CrossRef] [PubMed] [Google Scholar]
  54. X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit, Nature Mater. 7 (2008) 435–441. [CrossRef] [PubMed] [Google Scholar]
  55. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies, Nature Comms. 1 (2010) 143. [CrossRef] [Google Scholar]
  56. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index, Nature 455 (2008) 376–379. [Google Scholar]
  57. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale, Nature 461 (2009) 629–632. [CrossRef] [PubMed] [Google Scholar]
  58. M. Scalora, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, J.W. Haus, Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks, Opt. Express 15, 2 (2007) 508–523. [CrossRef] [Google Scholar]
  59. D.L. Jaggard, N. Engheta, ChirosorbTM as an invisible medium, Electron. Lett. 25, 3 (1989) 173–174. [CrossRef] [Google Scholar]
  60. M.M.I. Saadoun, N. Engheta, A reciprocal phase shifter using novel pseudochiral or Ω medium, Microw. Opt. Technol. Lett. 5, 4 (1992) 184–188. [CrossRef] [Google Scholar]
  61. L.-X. Ran, J.T. Huang-Fu, H. Chen, X.-M. Zhang, K.S. Chen, T.M. Grzegorczyk, J.A. Kong, Experimental study on several left-handed metamaterials, Progress Electromagn. Res. 51 (2005) 249–279. [CrossRef] [Google Scholar]
  62. N. Engheta, A. Salandrino, A. Alù, Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors, Phys. Rev. Lett. 95, 9 (2005) 095504. [CrossRef] [Google Scholar]
  63. N. Engheta, Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials, Science 317, 5845 (2007) 1698–1702. [CrossRef] [PubMed] [Google Scholar]
  64. N. Engheta, From RF circuits to optical nanocircuits, IEEE Microw. Mag. 13, 4 (2012) 100–113. [CrossRef] [Google Scholar]
  65. A. Alù, N. Engheta, Tuning the scattering response of optical nanoantennas with nanocircuit loads, Nature Photon. 2 (2008) 307–310. [CrossRef] [Google Scholar]
  66. A. Alù, N. Engheta, Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas, Phys. Rev. Lett. 101 (2008) 043901. [CrossRef] [Google Scholar]
  67. J.M. Williams, Some problems with negative refraction, Phys. Rev. Lett. 87, 24 (2001) 249703. [CrossRef] [Google Scholar]
  68. G.W. ‘t Hooft, Comment on “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 87, 24 (2001) 249701. [CrossRef] [PubMed] [Google Scholar]
  69. D. Maystre, S. Enoch, Perfect lenses made with left-handed materials: Alice’s mirror? J. Opt. Soc. Am. A 21, 1 (2004) 122–131. [CrossRef] [Google Scholar]
  70. N. Garcia, M. Nieto-Vesperinas, Left-handed materials do not make a perfect lens, Phys. Rev. Lett. 88, 20 (2002) 207403. [CrossRef] [PubMed] [Google Scholar]
  71. N. Garcia, M. Nieto-Vesperinas, Is there an experimental verification of a negative index of refraction yet? Opt. Lett. 27, 11 (2002) 885–887. [CrossRef] [Google Scholar]
  72. P.M. Valanju, R.M. Walser, A.P. Valanju, Wave refraction in negative-index media: always positive and very inhomogeneous, Phys. Rev. Lett. 88 (2002) 187401. [CrossRef] [PubMed] [Google Scholar]
  73. J.B. Pendry, D.R. Smith, Comment on “Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous”, Phys. Rev. Lett. 90 (2003) 029703. [CrossRef] [Google Scholar]
  74. C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbah, M. Tanielian, Experimental verification and simulation of negative index of refraction using Snell’s law, Phys. Rev. Lett. 90, 10 (2003) 107401. [CrossRef] [PubMed] [Google Scholar]
  75. J.B. Pendry, D.R. Smith, Reversing light with negative refraction, Physics Today 57, 6 (2004) 37–43; cover photo: “The Boeing cube”: a structure designed for negative refractive index in the GHz range. [Google Scholar]
  76. V. Browning. DARPA Workshop on Negative Index MetaMaterials, May 2003. Participants included: V. Veselago (Moscow Institute of Physics and Technology, Russia), David Smith (UCSD), C. Parazzoli (Boeing), T. Schaefer (Mayo Clinic), J. Kong (MIT), Douglas Smith (NRL), S. Schultz (UCSD), R. Ziolkowski (UA), N. Engheta (U Penn), S. Sridhar (Northeastern), C. Caloz and T. Itoh (UCLA), A. Lakhtakia (PSU), C. Krowne (NRL), V. Agranovich (Institute of Spectroscopy, Russia), and D. Sievenpiper (HRL). [Google Scholar]
  77. R.W. Ziolkowski, Design, fabrication, and testing of double negative metamaterials, IEEE Trans. Antennas Propag. 51, 7 (2003) 1516–1529. [Google Scholar]
  78. N. Engheta, An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability, IEEE Antennas Wireless Propag. 1, 1 (2002) 10–13. [CrossRef] [Google Scholar]
  79. R.W. Ziolkowski, Ultra-thin metamaterial-based laser cavities, J. Opt. Soc. Am. B 23 (2006) 451–460. [CrossRef] [Google Scholar]
  80. A. Grbic, G.V. Eleftheriades, Negative refraction, growing evanescent waves, and sub-diffraction imaging in loaded transmission-line metamaterials, IEEE Microwave Theor. Tech. 51, 12 (2003) 2297–2305. [CrossRef] [Google Scholar]
  81. A. Lai, T. Itoh, C. Caloz, Composite right/left-handed transmission line metamaterials, IEEE Microw. Mag. 5, 3 (2004) 34–50. [Google Scholar]
  82. A. Grbic, G.V. Eleftheriades, Experimental verification of backward-wave radiation from a negative refractive index metamaterial, J. Appl. Phys. 92, 10 (2002) 5930–5935. [CrossRef] [Google Scholar]
  83. L. Liu, C. Caloz, T. Itoh, Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability, Electron. Lett. 38, 23 (2002) 1414–1416. [CrossRef] [Google Scholar]
  84. F. Yang, Y. Rahmat-Samii, A low-profile circularly polarized curl antenna over an electromagnetic bandgap (EBG) surface, Microw. Opt. Tech. Lett. 31, 4 (2001) 264–267. [CrossRef] [Google Scholar]
  85. R. Gonzalo, P. de Maagt, M. Sorolla, Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates, IEEE Trans. Microwave Theor. Tech. 47, 11 (1999) 2123–2130. [CrossRef] [Google Scholar]
  86. R.W. Ziolkowski, N. Engheta (Guest Eds.), Special Issue on Metamaterials, IEEE Trans. Antennas Propag., 51, 10 (2003). [Google Scholar]
  87. T. Itoh, A.A. Oliner, Special Issue on Metamaterials, IEEE Trans. Microwave Theor. Tech. 53, 4 (2005). [Google Scholar]
  88. R.W. Ziolkowski, A.D. Kipple, Application of double negative metamaterials to increase the power radiated by electrically small antennas, IEEE Trans. Antennas Propag. 51, 10 (2003) 2626–2640. [CrossRef] [Google Scholar]
  89. R.W. Ziolkowski, P. Jin, C.-C. Lin, Metamaterial-inspired engineering of antennas, Proc. IEEE 99, 10 (2011) 1720–1731. [Google Scholar]
  90. A. Erentok, P. Luljak, R.W. Ziolkowski, Antenna performance near a volumetric metamaterial realization of an artificial magnetic conductor, IEEE Trans. Antennas Propag. 53, 1 (2005) 160–172. [CrossRef] [Google Scholar]
  91. A. Alú, N. Engheta, Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency, IEEE Trans. Antennas Propag. 51, 10 (2003) 2558–2571. [CrossRef] [Google Scholar]
  92. A. Alú, N. Engheta, Plasmonic materials in transparency and cloaking problems: Mechanism, robustness and physical insights, Opt. Express 15, 6 (2007) 3318–3332. [CrossRef] [Google Scholar]
  93. A. Alú, N. Engheta, Plasmonic and metamaterial cloaking: physical mechanisms and potentials, J. Opt. A: Pure Appl. Opt. 10 (2008) 093002. [CrossRef] [Google Scholar]
  94. B. Edwards, M. Silveirinha, N. Engheta, Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials, Phys. Rev. Lett. 103, 15 (2009) 153901. [CrossRef] [Google Scholar]
  95. D.F. Sievenpiper, J.H. Schaffner, H.J. Song, R.Y. Loo, G. Tangonan, Two-dimensional beam steering using an electrically tunable impedance surface, IEEE Trans. Antennas Propag. 51, 10 (2003) 2713–2722. [CrossRef] [Google Scholar]
  96. F. Yang, Y. Rahmat-Samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEEE Trans. Antennas Propag. 51, 10 (2003) 2691–2703. [CrossRef] [Google Scholar]
  97. F. Yang, Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications, IEEE Trans. Antennas Propag. 51, 10 (2003) 2936–2946. [Google Scholar]
  98. F. Yang, Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, Cambridge, 2009. [Google Scholar]
  99. S. Clavijo, R.E. Diaz, W.E. McKinzie III, Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas, IEEE Trans. Antennas Propag. 51, 10 (2003) 2678–2690. [CrossRef] [Google Scholar]
  100. G. Kiziltas, D. Psychoudakis, J.L. Volakis, N. Kikuchi, Topology design optimization of dielectric substrates for bandwidth improvement of a patch antenna, IEEE Trans. Antennas Propag. 51, 10 (2003) 2732–2743. [CrossRef] [Google Scholar]
  101. G. Mumcu, K. Sertel, J.L. Volakis, Miniature antennas and arrays embedded within magnetic photonic crystals, IEEE Antennas Wireless Propag. Lett. 5, 1 (2006) 168–171. [CrossRef] [Google Scholar]
  102. G. Mumcu, K. Sertel, J.L. Volakis, Miniature antenna using printed coupled lines emulating degenerate band edge crystals, IEEE Trans. Antennas Propag. 57, 6 (2009) 1618–1624. [CrossRef] [Google Scholar]
  103. J.L. Volakis, K. Sertel, Narrowband and wideband metamaterial antennas based on degenerate band edge and magnetic photonic crystals, Proc. IEEE 99, 10 (2011) 1732–1745. [CrossRef] [Google Scholar]
  104. H. Mosallaei, K. Sarabandi, Magneto-dielectrics in electromagnetics: Concept and applications, IEEE Trans. Antennas Propag. 52, 6 (2004) 1558–1567. [CrossRef] [Google Scholar]
  105. K. Buell, H. Mosallaei, K. Sarabandi, A substrate for small patch antennas providing tunable miniaturization factors, IEEE Trans. Microwave Theor. Tech. 54, 1 (2006) 135–146. [CrossRef] [Google Scholar]
  106. H. Mosallaei, K. Sarabandi, Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate, IEEE Trans. Antennas Propag. 55, 1 (2007) 45–52. [CrossRef] [Google Scholar]
  107. M. Kashanianfard, K. Sarabandi, Metamaterial inspired optically transparent band-selective ground planes for antenna applications, IEEE Trans. Antennas Propag. 61, 9 (2013) 4624–4631. [CrossRef] [Google Scholar]
  108. C.L. Holloway, E.F. Kuester, J. Baker-Jarvis, P. Kabos, A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix, IEEE Trans. Antennas Propag. 51, 10 (2003) 2596–2603. [CrossRef] [Google Scholar]
  109. E.F. Kuester, M.A. Mohamed, M. Piket-May, C.L. Holloway, Averaged transition conditions for electromagnetic fields at a metafilm, IEEE Trans. Antennas Propag. 51, 10 (2003) 2641–2651. [CrossRef] [Google Scholar]
  110. C.L. Holloway, A. Dienstfrey, E.F. Kuester, J.F. O’Hara, A.K. Azad, A.J. Taylor, A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials, Metamaterials 3, 2 (2009) 100–112. [CrossRef] [Google Scholar]
  111. C.L. Holloway, E.F. Kuester, A. Dienstfrey, Characterizing metasurfaces/metafilms: The connection between surface susceptibilities and effective material properties, IEEE Antennas Wireless Propag. Lett. 10 (2011) 1507–1511. [CrossRef] [Google Scholar]
  112. C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag. 54, 2 (2012) 10–35. [CrossRef] [Google Scholar]
  113. M.A. Antoniades, G.V. Eleftheriades, Compact linear lead/lag metamaterial phase shifters for broadband applications, IEEE Antennas Wireless Propag. Lett. 2, 1 (2003) 103–106. [CrossRef] [Google Scholar]
  114. Y. Horii, C. Caloz, T. Itoh, Super-compact multilayered left-handed transmission line and diplexer application, IEEE Trans. Microwave Theor. Tech. 53, 4 (2005) 1527–1534. [CrossRef] [Google Scholar]
  115. C. Caloz, T. Itoh, A. Rennings, CRLH metamaterial leaky-wave and resonant antennas, IEEE Antennas Propag. Mag. 50, 5 (2008) 25–39. [Google Scholar]
  116. Y. Dong, T. Itoh, Metamaterial-based antennas, Proc. IEEE 100, 7 (2012) 2271–2285. [CrossRef] [Google Scholar]
  117. G.V. Eleftheriades, N. Engheta (Guest Eds.), Special Issue on metamaterials: fundamentals and applications in the microwave and optical regimes, Proc. IEEE, 99, 10 (2011). [Google Scholar]
  118. Second DARPA MURI on Metamaterials. It was led by a Boeing Phantom Works (now Boeing Research and Technology) team. The principals at Boeing were Drs. M. Tanielian and C. Parazzoli. The university and national laboratory principals were: UCSD, S. Schultz and D. Vier; Duke, S. Cummer and D. Smith; U. Penn, N. Engheta; UAz, R.W. Ziolkowski; ISU, C. Soukoulis; UT Austin, G. Shvets; and NIST-Boulder, C. Holloway [Google Scholar]
  119. A. Erentok, R.W. Ziolkowski, J.A. Nielsen, R.B. Greegor, C.G. Parazzoli, M.H. Tanielian, S.A. Cummer, B.-I. Popa, T. Hand, D.C. Vier, S. Schultz, Low frequency lumped element-based negative index metamaterial, Appl. Phys. Lett. 91 (2007) 184104. [CrossRef] [Google Scholar]
  120. A. Erentok, R.W. Ziolkowski, J.A. Nielsen, R.B. Greegor, C.G. Parazzoli, M.H. Tanielian, S.A. Cummer, B.-I. Popa, T. Hand, D.C. Vier, S. Schultz, Lumped element-based, highly sub-wavelength negative index metamaterials at UHF Frequencies, J. Appl. Phys. 104, 3 (2008) 034901. [CrossRef] [Google Scholar]
  121. S.A. Tretyakov, Meta-materials with wideband negative permittivity and permeability, Microw. Opt. Technol. Lett. 31, 3 (2001) 163–165. [CrossRef] [Google Scholar]
  122. B.-I. Popa, S.A. Cummer, An architecture for active metamaterial particles and experimental validation at RF, Microw. Opt. Technol. Lett. 49, 10 (2007) 2574–2577. [CrossRef] [Google Scholar]
  123. Y. Yuan, B.-I. Popa, S.A. Cummer, Zero loss magnetic metamaterials using powered active unit cells, Opt. Express 17, 18 (2009) 16135–16143. [CrossRef] [Google Scholar]
  124. B.-I. Popa, S.A. Cummer, Nonreciprocal active metamaterials, Phys. Rev. B 85, 20 (2012) 205101. [CrossRef] [Google Scholar]
  125. S. Hrabar, I. Krois, A. Kiricenko, Towards active dispersionless ENZ metamaterial for cloaking applications, Metamaterials 4, 2 (2010) 89–97. [CrossRef] [Google Scholar]
  126. S. Hrabar, I. Krois, I. Bonic, A. Kiricenko, Negative capacitor paves the way to ultra-broadband metamaterials, Appl. Phys. Lett. 99, 25 (2011) 254103. [CrossRef] [Google Scholar]
  127. S. Hrabar, I. Krois, I. Bonic, A. Kiricenko, Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterial, Appl. Phys. Lett. 102, 5 (2013) 054108. [CrossRef] [Google Scholar]
  128. D.F. Sievenpiper, Superluminal waveguides based on non-Foster circuits for broadband leaky-wave antennas, IEEE Antennas Wireless Propag. Lett. 10 (2011) 231–234. [Google Scholar]
  129. A.A. Zharov, I.V. Shadrivov, Y.S. Kivshar, Nonlinear properties of left-handed metamaterials, Phys. Rev. Lett. 91, 3 (2003) 037401. [CrossRef] [PubMed] [Google Scholar]
  130. I.V. Shadrivov, S.K. Morrison, Y.S. Kivshar, Tunable split-ring resonators for nonlinear negative-index metamaterials, Opt. Express 14, 20 (2006) 9344–9349. [CrossRef] [Google Scholar]
  131. D.A. Powell, I.V. Shadrivov, Y.S. Kivshar, M.V. Gorkunov, Self-tuning mechanisms of nonlinear split-ring resonators, Appl. Phys. Lett. 91, 14 (2007) 144107. [CrossRef] [Google Scholar]
  132. S. Saadat, M. Adnan, H. Mosallaei, E. Afshari, Composite metamaterial and metasurface integrated with non-Foster active circuit elements: A bandwidth-enhancement investigation, IEEE Trans. Antennas Propag. 61, 3 (2013) 1210–1218. [CrossRef] [Google Scholar]
  133. M. Barbuto, A. Monti, F. Bilotti, A. Toscano, Design of a non-Foster actively loaded SRR and application in metamaterial-inspired components, IEEE Trans. Antennas Propag. 61, 3 (2013) 1219–1227. [CrossRef] [Google Scholar]
  134. N. Zhu, R.W. Ziolkowski, Broad bandwidth, electrically small antenna augmented with an internal non-Foster element, IEEE Antennas Wireless Propag. Lett. 11 (2012) 1116–1120. [CrossRef] [Google Scholar]
  135. N. Zhu, R.W. Ziolkowski, Design and measurements of an electrically small, broad bandwidth, non-Foster circuit-augmented protractor antenna, Appl. Phys. Lett. 101 (2012) 024107. [CrossRef] [Google Scholar]
  136. M.-C. Tang, N. Zhu, R.W. Ziolkowski, Augmenting a modified Egyptian axe dipole antenna with non-Foster elements to enlarge its directivity bandwidth, IEEE Antennas Wireless Propag. Lett. 12 (2013) 421–424. [CrossRef] [Google Scholar]
  137. N. Zhu, R.W. Ziolkowski, Broad bandwidth, electrically small, non-Foster element-augmented antenna designs, analyses, and measurements, IEICE Trans. Commun. E96-B, 10 (2013) 2399–2409. [CrossRef] [Google Scholar]
  138. R.W. Ziolkowski, M.-C. Tang, N. Zhu, An efficient, broad bandwidth, high directivity, electrically small antenna, Microw. Opt. Technol. Lett. 55, 6 (2013) 1430–1434. [CrossRef] [Google Scholar]
  139. H. Mirzaei, G.V. Eleftheriades, A resonant printed monopole antenna with an embedded non-Foster matching network, IEEE Trans. Antennas Propag. 61, 11 (2013) 5363–5371. [CrossRef] [Google Scholar]
  140. H. Mirzaei, G.V. Eleftheriades, Realizing non-Foster reactive elements using negative-group-delay networks, IEEE Trans. Microwave Theor. Tech. 61, 12 (2013) 4322–4332. [Google Scholar]
  141. E. Ugarte-Munoz, S. Hrabar, D. Segovia-Vargas, A. Kiricenko, Stability of non-Foster reactive elements for use in active metamaterials and antennas, IEEE Trans. Antennas Propag. 60 (2012) 3490–3494. [CrossRef] [Google Scholar]
  142. Y. Fan, K.Z. Rajab, Y. Hao, Noise analysis of broadband active metamaterials with non-Foster loads, J. Appl. Phys. 113, 23 (2013) 233905. [CrossRef] [Google Scholar]
  143. H.-T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices, Nature 444 (2006) 597–600. [CrossRef] [PubMed] [Google Scholar]
  144. T.A. Klar, A.V. Kildishev, V.P. Drachev, V.M. Shalaev, Negative-index metamaterials: going optical, IEEE J. Sel. Top. Quantum Electron. 12, 6 (2006) 1106–1115. [CrossRef] [Google Scholar]
  145. S. Xiao, V.P. Drachev, A.V. Kildishev, X. Ni, U.K. Chettiar, H.-K. Yuan, V.M. Shalaev, Loss-free and active optical negative-index metamaterials, Nature 466, 7307 (2010) 735–738. [CrossRef] [Google Scholar]
  146. J.A. Gordon, R.W. Ziolkowski, The design and simulated performance of a coated nano-particle laser, Opt. Express 15 (2007) 2622–2653. [Google Scholar]
  147. J.A. Gordon, R.W. Ziolkowski, Optical CNP metamaterials, Opt. Express 16 (2008) 6692–6716. [CrossRef] [PubMed] [Google Scholar]
  148. S. Arslanagić, R.W. Ziolkowski, Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole – resonance and transparency effects, J. Opt. 12 (2010) 024014. [CrossRef] [Google Scholar]
  149. R.W. Ziolkowski, S. Arslanagić, J. Geng, Where high-frequency engineering advances optics: active nanoparticles as nanoantennas, in: A. Alú, M. Agio (Eds.), Optical Antennas, Cambridge University Press, London, 2012, pp. 46–63, Chap. 4. [CrossRef] [Google Scholar]
  150. S. Arslanagić, R.W. Ziolkowski, Jamming of quantum emitters by active coated nano-particles, IEEE J. Sel. Top. Quantum Electron. 19, 3 (2013) 4800506. [CrossRef] [Google Scholar]
  151. N. Meinzer, M. Ruther, S. Linden, C.M. Soukoulis, G. Khitrova, J. Hendrickson, J.D. Olitzky, H.M. Gibbs, M. Wegener, Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain, Opt. Express 18, 23 (2010) 24140–24151. [CrossRef] [Google Scholar]
  152. Z. Huang, Th. Koschny, C.M. Soukoulis, Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium, Phys. Rev. Lett. 108, 18 (2012) 187402. [CrossRef] [Google Scholar]
  153. O. Hess, J.B. Pendry, S.A. Maier, R.F. Oulton, J.M. Hamm, K.L. Tsakmakidis, Active nanoplasmonic metamaterials, Nature Mater. 11, 7 (2012) 573–584. [CrossRef] [PubMed] [Google Scholar]
  154. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314, 5801 (2006) 977–980. [CrossRef] [PubMed] [Google Scholar]
  155. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312, 5781 (2006) 1780–1782. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  156. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100, 20 (2008) 207402. [CrossRef] [PubMed] [Google Scholar]
  157. M.G. Silveirinha, N. Engheta, Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials, Phys. Rev. B 76, 24 (2007) 245109. [CrossRef] [Google Scholar]
  158. B. Edwards, A. Alù, M.E. Young, M. Silveirinha, N. Engheta, Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide, Phys. Rev. Lett. 100, 3 (2008) 033903. [CrossRef] [Google Scholar]
  159. A. Sanada, C. Caloz, T. Itoh, Characteristics of the composite right/left-handed transmission lines, IEEE Microw. Wireless Compon. Lett. 14, 2 (2004) 68–70. [CrossRef] [Google Scholar]
  160. A. Lai, K.M.K.H. Leong, T. Itoh, Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures, IEEE Trans. Antennas Propag. 55, 3 (2007) 868–876. [CrossRef] [Google Scholar]
  161. R.W. Ziolkowski, Propagation in and scattering from a matched metamaterial having a zero index of refraction, Phys. Rev. E 70 (2004) 046608. [CrossRef] [Google Scholar]
  162. A. Alù, M.G. Silveirinha, A. Salandrino, N. Engheta, Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern, Phys. Rev. B 75, 15 (2007) 155410. [CrossRef] [Google Scholar]
  163. N. Engheta, R.W. Ziolkowski (Eds.), Metamaterials – Physics and Engineering Explorations, Wiley-IEEE Press, Hoboken, NJ, 2006. [Google Scholar]
  164. G.V. Eleftheriades, K.G. Balmain (Eds.), Negative-Refraction Metamaterials, Wiley-IEEE Press, Hoboken, NJ, 2005. [Google Scholar]
  165. C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, Hoboken, NJ, 2005. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.