Issue |
EPJ Appl. Metamat.
Volume 5, 2018
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/epjam/2018003 | |
Published online | 17 July 2018 |
https://doi.org/10.1051/epjam/2018003
Research Article
Laser beam zooming and deflection using a nonlinear metamaterial refracting medium
AWE Aldermaston,
Reading
RG74PR,
Berkshire, UK
* e-mail: andrew.comley@awe.co.uk
Received:
21
April
2017
Accepted:
31
January
2018
Published online: 17 July 2018
In-process control of the focal spot size and pointing position of a laser as it interacts with a target (beam zooming and deflection) offers the possibility of unprecedented efficiency improvements in a number of applications, such as inertial confinement fusion and laser micromachining. Here is described a system in which the focussing characteristics of a laser beam at one wavelength can be controlled by a lower-intensity beam at another wavelength, via their mutual interaction with a nonlinear metamaterial refracting medium. Such a metamaterial approach permits the optical response of the medium to be tailored according to the wavelengths of interest and time response required in a given application. A metamolecule unit cell design is described in terms of an equivalent circuit based on a pair of LCR (inductance, capacitance, resistance) circuits coupled by a common nonlinear capacitor. The circuit is studied using an analytical approach to obtain an understanding of its properties and design relationships between circuit parameters. Potential realisations of the circuit are discussed.
Key words: Laser / Zooming / Deflection / Metamaterial / Nonlinear
© British Crown Owned Copyright 2018/AWE
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.