Issue
EPJ Appl. Metamat.
Volume 11, 2024
Special Issue on ‘Metamaterials for Novel Wave Phenomena: Theory, Design and Application in Microwaves’, edited by Sander Mann and Stefano Vellucci
Article Number 7
Number of page(s) 13
DOI https://doi.org/10.1051/epjam/2024006
Published online 11 April 2024
  1. N. Engheta, R.W. Ziolkowski, Metamaterials: physics and engineering explorations (John Wiley & Sons, 2006) [Google Scholar]
  2. W. Lin, R.W. Ziolkowski, Electrically small, single-substrate Huygens dipole rectenna for ultracompact wireless power transfer applications, IEEE Trans. Antennas Propag. 69, 1130 (2020) [Google Scholar]
  3. F. Costa, A. Monorchio, G. Manara, Theory, design and perspectives of electromagnetic wave absorbers, IEEE Electromagn. Compat. Mag. 5, 67 (2016) [CrossRef] [Google Scholar]
  4. G.V.R. Xavier, A.J.R. Serres, E.G. da Costa, A.C. de Oliveira, L.A.M.M. Nobrega, V.C. de Souza, Design and application of a metamaterial superstrate on a bio-inspired antenna for partial discharge detection through dielectric windows, Sensors 19, 4255 (2019) [CrossRef] [Google Scholar]
  5. https://www.scopus.com/, query: biomedical and antennas and metamaterials and metasurfaces, Retrieval date November 3, 2023 [Google Scholar]
  6. https://patents.google.com/, query: biomedical and antennas and metamaterials and metasurfaces, Retrieval date November 3, 2023 [Google Scholar]
  7. S. Zhang et al., Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective, Nanophotonics 10, 259 (2020) [CrossRef] [Google Scholar]
  8. S. Saha et al., A glucose sensing system based on transmission measurements at millimetre waves using micro strip patch antennas, Sci. Rep. 7, 6855 (2017) [CrossRef] [Google Scholar]
  9. M.N. Hasan, S. Tamanna, P. Singh, M.D. Nadeem, M. Rudramuni, Cylindrical dielectric resonator antenna sensor for non-invasive glucose sensing application, in 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN) (IEEE, 2019), pp. 961–964 [Google Scholar]
  10. V. Patel et al., Moisture sensor using microstrip patch antenna, in ICCCE 2021: Proceedings of the 4th International Conference on Communications and Cyber Physical Engineering (Springer, 2022), pp. 689–700 [Google Scholar]
  11. E. Groumpas, M. Koutsoupidou, I.S. Karanasiou, C. Papageorgiou, N. Uzunoglu, Real-time passive brain monitoring system using near-field microwave radiometry, IEEE Trans. Biomed. Eng. 67, 158 (2019) [Google Scholar]
  12. D.B. Rodrigues, P.R. Stauffer, P.J. Pereira, P.F. Maccarini, Microwave radiometry for noninvasive monitoring of brain temperature, in Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy (Springer, 2018), pp. 87–127 [Google Scholar]
  13. B. Borja, J.A. Tirado-Méndez, H. Jardon-Aguilar, An overview of UWB antennas for microwave imaging systems for cancer detection purposes, Prog. Electromagn. Res. B 80, 173 (2018) [CrossRef] [Google Scholar]
  14. N. Ghavami, I. Sotiriou, P. Kosmas, Preliminary experimental validation of radar imaging for stroke detection with phantoms, in 2019 Photonics & Electromagnetics Research S Symposium-Fall (PIERS-Fall), (IEEE, 2019), pp. 1916–1923 [Google Scholar]
  15. O.B. Debnath, K. Ito, K. Saito, M. Uesaka, Design of invasive and non-invasive antennas for the combination of microwave-hyperthermia with radiation therapy, in 2015 IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), (IEEE, 2015), pp. 71–72 [Google Scholar]
  16. H. Huang, L. Zhang, M.A. Moser, W. Zhang, B. Zhang, A review of antenna designs for percutaneous microwave ablation, Phys. Med. 84, 254 (2021) [CrossRef] [Google Scholar]
  17. N.A. Malik, P. Sant, T. Ajmal, M. Ur-Rehman, Implantable antennas for bio-medical applications, IEEE J. Electromagn. RF Microw. Med. Biol. 5, 84 (2020) [Google Scholar]
  18. A. Kiourti, K.S. Nikita, Implantable antennas: a tutorial on design, fabrication, and in vitro\backslash/in vivo testing, IEEE Microw. Mag. 15, 77 (2014) [CrossRef] [Google Scholar]
  19. S.N. Mahmood et al., Recent advances in wearable antenna technologies: a review, Prog. Electromagn. Res. B 89, 1 (2020) [CrossRef] [Google Scholar]
  20. E. Razzicchia et al., Metasurface-enhanced antennas for microwave brain imaging, Diagnostics 11, 424 (2021) [CrossRef] [Google Scholar]
  21. V. Portosi, A.M. Loconsole, F. Prudenzano, A split ring resonator-based metamaterial for microwave impedance matching with biological tissue, Appl. Sci. 10, 6740 (2020) [CrossRef] [Google Scholar]
  22. R. Joshi et al., Dual-band, dual-sense textile antenna with AMC backing for localization using GPS and WBAN/WLAN, IEEE Access 8, 89468 (2020) [CrossRef] [Google Scholar]
  23. N. Alrayes, M.I. Hussein, Metamaterial-based sensor design using split ring resonator and Hilbert fractal for biomedical application, Sens. Bio-Sens. Res. 31, 100395 (2021) [CrossRef] [Google Scholar]
  24. M.T. Islam, M.T. Islam, M. Samsuzzaman, H. Arshad, H. Rmili, Metamaterial loaded nine high gain vivaldi antennas array for microwave breast imaging application, IEEE Access 8, 227678 (2020) [CrossRef] [Google Scholar]
  25. R. Wu, J. Dong, M. Wang, Wearable polarization conversion metasurface MIMO antenna for biomedical applications in 5 GHz WBAN, Biosensors 13, 73 (2023) [CrossRef] [Google Scholar]
  26. E. Razzicchia, I. Sotiriou, H. Cano-Garcia, E. Kallos, G. Palikaras, P. Kosmas, Feasibility study of enhancing microwave brain imaging using metamaterials, Sensors 19, 5472 (2019) [CrossRef] [Google Scholar]
  27. S. Ahsan, M. Koutsoupidou, E. Razzicchia, I. Sotiriou, P. Kosmas, Advances towards the development of a brain microwave imaging scanner, in 2019 13th European Conference on Antennas and Propagation (EuCAP), (IEEE, 2019), pp. 1–4 [Google Scholar]
  28. H. Cano-Garcia, P. Kosmas, E. Kallos, Enhancing electromagnetic transmission through biological tissues at millimeter waves using subwavelength metamaterial antireflection coatings, in 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), (IEEE, 2015), pp. 43–45 [Google Scholar]
  29. M. Zada, I.A. Shah, H. Yoo, Metamaterial-loaded compact high-gain dual-band circularly polarized implantable antenna system for multiple biomedical applications, IEEE Trans. Antennas Propag. 68, 1140 (2019) [Google Scholar]
  30. A. Saidi, K. Nouri, B.S. Bouazza, K. Becharef, A. Cherifi, T. Abes, E-shape metamaterials embedded implantable antenna for ISM-band biomedical applications, Res. Biomed. Eng. 38, 351 (2022) [CrossRef] [Google Scholar]
  31. K. Zhang, G.A. Vandenbosch, S. Yan, A novel design approach for compact wearable antennas based on metasurfaces, IEEE Trans. Biomed. Circuits Syst. 14, 918 (2020) [CrossRef] [Google Scholar]
  32. M. Koutsoupidou, N. Uzunoglu, I.S. Karanasiou, Antennas on metamaterial substrates as emitting components for THz biomedical imaging, in 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), (IEEE, 2012), pp. 319–322 [Google Scholar]
  33. G.K. Das, S. Basu, B. Mandal, D. Mitra, R. Augustine, M. Mitra, Gain-enhancement technique for wearable patch antenna using grounded metamaterial, IET Microw. Antennas Propag. 14, 2045 (2020) [CrossRef] [Google Scholar]
  34. E.F.N.M. Hussin, P.J. Soh, M.F. Jamlos, H. Lago, A.A. Al-Hadi, M.H.F. Rahiman, A wideband textile antenna with a ring-slotted AMC plane, Appl. Phys. A 123, 1 (2017) [CrossRef] [Google Scholar]
  35. S.J.M. Rao, Y.K. Srivastava, G. Kumar, D. Roy Chowdhury, Modulating fundamental resonance in capacitive coupled asymmetric terahertz metamaterials, Sci. Rep. 8, 16773 (2018) [CrossRef] [Google Scholar]
  36. S.K. Sharma, R.K. Chaudhary, Investigation on SRR-loaded metamaterial antenna with different feeding methods, in 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (IEEE, 2015), pp. 478–479 [Google Scholar]
  37. D. Brizi, M. Conte, A. Monorchio, A performance-enhanced antenna for microwave biomedical applications by using metasurfaces, IEEE Trans. Antennas Propag. 71, 3314 (2023) [CrossRef] [Google Scholar]
  38. S. Zouhdi, A. Sihvola, A.P. Vinogradov, Metamaterials and plasmonics: fundamentals, modelling, applications (Springer Science & Business Media, 2008) [Google Scholar]
  39. L. Namitha, M. Sebastian, High permittivity ceramics loaded silicone elastomer composites for flexible electronics applications, Ceram. Int. 43, 2994 (2017) [CrossRef] [Google Scholar]
  40. A.S. Alqadami, N. Nguyen-Trong, B. Mohammed, A.E. Stancombe, M.T. Heitzmann, A. Abbosh, Compact unidirectional conformal antenna based on flexible high-permittivity custom-made substrate for wearable wideband electromagnetic head imaging system, IEEE Trans. Antennas Propag. 68, 183 (2019) [Google Scholar]
  41. A. Al-Adhami, E. Ercelebi, A flexible metamaterial based printed antenna for wearable biomedical applications, Sensors 21, 7960 (2021) [CrossRef] [Google Scholar]
  42. M. Alibakhshikenari et al., Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection, IEEE Access 8, 174667 (2020) [CrossRef] [Google Scholar]
  43. R.K. Pokharel, A. Barakat, S. Alshhawy, K. Yoshitomi, C. Sarris, Wireless power transfer system rigid to tissue characteristics using metamaterial inspired geometry for biomedical implant applications, Sci. Rep. 11, 5868 (2021) [CrossRef] [Google Scholar]
  44. T. Shaw, B. Mandal, D. Mitra, P.K. Rangaiah, M.D. Perez, R. Augustine, Metamaterial integrated highly efficient wireless power transfer system for implantable medical devices, AEU-Int. J. Electron. Commun. 173, 155010 (2024) [CrossRef] [Google Scholar]
  45. M.S. Islam, M.T. Islam, A. Hoque, M.T. Islam, N. Amin, M.E. Chowdhury, A portable electromagnetic head imaging system using metamaterial loaded compact directional 3D antenna, IEEE Access 9, 50893 (2021) [CrossRef] [Google Scholar]
  46. D. Negi, A. Bansal, Compact conformal UWB antenna design with enhanced gain characteristics using double-negative (DNG) metamaterial structure for biomedical applications, J. Inst. Eng. India Ser. B 1 104, 1273 (2023) [CrossRef] [Google Scholar]
  47. A. Webb, A. Shchelokova, A. Slobozhanyuk, I. Zivkovic, R. Schmidt, Novel materials in magnetic resonance imaging: high permittivity ceramics, metamaterials, metasurfaces and artificial dielectrics, Magn. Reson. Mater. Phys. Biol. Med. 35, 875 (2022) [CrossRef] [Google Scholar]
  48. J.M. Algarín, M.J. Freire, F. Breuer, V.C. Behr, Metamaterial magnetoinductive lens performance as a function of field strength, J. Magn. Reson. 247, 9 (2014) [CrossRef] [Google Scholar]
  49. M.J. Freire, R. Marques, L. Jelinek, Experimental demonstration of a µ =−1 metamaterial lens for magnetic resonance imaging, Appl. Phys. Lett. 93, 231108 (2008) [CrossRef] [Google Scholar]
  50. M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, J. Hajnal, Microstructured magnetic materials for RF flux guides in magnetic resonance imaging, Science 291, 849 (2001) [CrossRef] [Google Scholar]
  51. A.V. Shchelokova et al., Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T, J. Magn. Reson. 286, 78 (2018) [CrossRef] [Google Scholar]
  52. S. Saha et al., A smart switching system to enable automatic tuning and detuning of metamaterial resonators in MRI scans, Sci. Rep. 10, 1 (2020) [NASA ADS] [CrossRef] [Google Scholar]
  53. G. Duan, X. Zhao, S.W. Anderson, X. Zhang, Boosting magnetic resonance imaging signal-to-noise ratio using magnetic metamaterials, Commun. Phys. 2, 35 (2019) [CrossRef] [Google Scholar]
  54. R. Schmidt, A. Webb, Metamaterial combining electric-and magnetic-dipole-based configurations for unique dual-band signal enhancement in ultrahigh- field magnetic resonance imaging, ACS Appl. Mater. Interfaces 9, 34618 (2017) [CrossRef] [Google Scholar]
  55. S. Saha et al., A smart switching system to enable automatic tuning and detuning of metamaterial resonators in MRI scans, Sci. Rep. 10, 10042 (2020) [CrossRef] [Google Scholar]
  56. P. Mohr et al., Image reconstruction analysis for positron emission tomography with heterostructured scintillators, IEEE Trans. Radiat. Plasma Med. Sci. 7, 41 (2022) [Google Scholar]
  57. A.P. Slobozhanyuk et al., Enhancement of magnetic resonance imaging with metasurfaces, Adv. Mater. 28, 1832 (2016) [CrossRef] [Google Scholar]
  58. V. Vorobyev et al., Improving B1 homogeneity in abdominal imaging at 3 T with light and compact metasurface, https://arxiv.org/abs/2102.01384 (2021) [Google Scholar]
  59. R. Schmidt, A. Slobozhanyuk, P. Belov, A. Webb, Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging, Sci. Rep. 7, 1678 (2017) [CrossRef] [Google Scholar]
  60. T.-K. Truong, D.W. Chakeres, D.Q. Beversdorf, D.W. Scharre, P. Schmalbrock, Effects of static and radiofrequency magnetic field inhomogeneity in ultra-high field magnetic resonance imaging, Magn. Reson. Imaging 24, 103 (2006) [CrossRef] [Google Scholar]
  61. P. Lecoq, S. Gundacker, SiPM applications in positron emission tomography: toward ultimate PET time-of-flight resolution, Eur. Phys. J. Plus 136, 292 (2021) [CrossRef] [Google Scholar]
  62. R.M. Turtos, S. Gundacker, E. Auffray, P. Lecoq, Towards a metamaterial approach for fast timing in PET: experimental proof-of-concept, Phys. Med. Biol. 64, 185018 (2019) [CrossRef] [Google Scholar]
  63. 28 IEEE Standards Coordinating Committee and others, IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, IEEE C95 1–1991 (1992) [Google Scholar]
  64. M. Wang et al., Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network, IEEE Trans. Antennas Propag. 66, 3076 (2018) [CrossRef] [Google Scholar]
  65. J. Wang, O. Fujiwara, Reduction of electromagnetic absorption in the human head for portable telephones by a ferrite sheet attachment, IEICE Trans. Commun. 80, 1810 (1997) [Google Scholar]
  66. J.-N. Hwang, F.-C. Chen, Reduction of the peak SAR in the human head with metamaterials, IEEE Trans. Antennas Propag. 54, 3763 (2006) [CrossRef] [Google Scholar]
  67. S. Kahng et al., A metamaterial-inspired handset antenna with the SAR reduction, in 2012 IEEE International Symposium on Electromagnetic Compatibility (IEEE, 2012), pp. 307–310 [Google Scholar]
  68. K.-L. Wong, Planar antennas for wireless communications, Microw. J. 46, 144 (2003) [Google Scholar]
  69. H.M. Madjar, Human radio frequency exposure limits: an update of reference levels in Europe, USA, Canada, China, Japan and Korea, in 2016 International Symposium on Electromagnetic Compatibility-EMC EUROPE (IEEE, 2016), pp. 467–473 [Google Scholar]
  70. H. Griguer, M.M. Tentzeris, A. Nauroze, M. Drissi, A novel ultra-thin flexible metamaterial absorber for human body protection from EMF hazards, in 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), (IEEE, 2017), pp. 1–4 [Google Scholar]
  71. J. Tak, J. Choi, A wearable metamaterial microwave absorber, IEEE Antennas Wirel. Propag. Lett. 16, 784 (2016) [Google Scholar]
  72. F. Lucchini, R. Torchio, V. Cirimele, P. Alotto, P. Bettini, Topology optimization for electromagnetics: a survey, IEEE Access 10, 98593 (2022) [CrossRef] [Google Scholar]
  73. P. Min, Z. Song, L. Yang, V.G. Ralchenko, J. Zhu, Optically transparent flexible broadband metamaterial absorber based on topology optimization design, Micromachines 12, 1419 (2021) [CrossRef] [Google Scholar]
  74. A.A. Zadpoor, M.J. Mirzaali, L. Valdevit, J.B. Hopkins, Design, material, function, and fabrication of metamaterials, APL Mater. 11, 020401 (2023) [CrossRef] [Google Scholar]
  75. J. Tie, D. Smith, L. Ruopeng, Metamaterials: theory, design and application (Springer, 2010) [Google Scholar]
  76. H. Cano-Garcia, P. Kosmas, E. Kallos, Demonstration of enhancing the transmission of 60 GHz waves through biological tissue using thin metamaterial antireflection coatings, in 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS) (IEEE, 2016), pp. 85–87 [Google Scholar]
  77. O. Karadima, P. Lu, I. Sotiriou, P. Kosmas, Experimental validation of the DBIM-TwIST algorithm for brain stroke detection and differentiation using a multi-layered anatomically complex head phantom, IEEE Open J. Antennas Propag. 3, 274 (2022) [CrossRef] [Google Scholar]
  78. E. Razzicchia, Metasurface Technology for Electromagnetic Medical Devices, Doctoral Thesis, 2023 [Google Scholar]
  79. L. Malena, O. Fiser, P.R. Stauffer, T. Drizdal, J. Vrba, D. Vrba, Feasibility evaluation of metamaterial microwave sensors for non-invasive blood glucose monitoring, Sensors 21, 6871 (2021) [CrossRef] [Google Scholar]
  80. B. Khalesi et al., A microwave imaging procedure for lung lesion detection: preliminary results on multilayer phantoms, Electronics 11, 2105 (2022) [CrossRef] [Google Scholar]
  81. N. Joachimowicz, B. Duchêne, C. Conessa, O. Meyer, Anthropomorphic breast and head phantoms for microwave imaging, Diagnostics 8, 85 (2018) [CrossRef] [Google Scholar]
  82. B. McDermott et al., Anatomically and dielectrically realistic microwave head phantom with circulation and reconfigurable lesions, Prog. Electromagn. Res. B, 78, 47 (2017) [CrossRef] [Google Scholar]
  83. M. Pérez-Escribano, E. Márquez-Segura, Parameters characterization of dielectric materials samples in microwave and millimeter-wave bands, IEEE Trans. Microw. Theory Tech. 69, 1723 (2021) [CrossRef] [Google Scholar]
  84. E. Canicattì et al., Anatomical and dielectric tissue mimicking phantoms for microwave breast imaging, in 2022 16th European Conference on Antennas and Propagation (EuCAP), (IEEE, 2022), pp. 1–4 [Google Scholar]
  85. M.S. Islam, M.T. Islam, A.F. Almutairi, Experimental tissue mimicking human head phantom for estimation of stroke using IC-CF-DMAS algorithm in microwave based imaging system, Sci. Rep. 11, 22015 (2021) [CrossRef] [Google Scholar]
  86. M. Otterskog, N. Petrovic, P.O. Risman, A multi-layered head phantom for microwave investigations of brain hemorrhages, in 2016 IEEE conference on antenna measurements & applications (CAMA), (IEEE, 2016), pp. 1–3 [Google Scholar]
  87. M.S.M. Said, N. Seman, Preservation of gelatin-based phantom material using vinegar and its life-span study for application in microwave imaging, IEEE Trans. Dielectr. Electr. Insul. 24, 528 (2017) [CrossRef] [Google Scholar]
  88. V. User Manual, OTA Phantoms User Manual V 1.1, 2010 [Google Scholar]
  89. R.W. Ziolkowski, Low profile, broadside radiating, electrically small Huygens source antennas, IEEE Access 3, 2644 (2015) [CrossRef] [Google Scholar]
  90. W. Lin, R.W. Ziolkowski, Electrically small, single-substrate Huygens dipole rectenna for ultracompact wireless power transfer applications, IEEE Trans. Antennas Propag. 69, 2 (2020) [Google Scholar]
  91. M. Chen, M. Kim, A.M. Wong, G.V. Eleftheriades, Huygens' metasurfaces from microwaves to optics: a review, Nanophotonics 7, 1207 (2018) [CrossRef] [Google Scholar]
  92. M. Longhi et al., Array synthesis of circular huygens metasurfaces for antenna beam-shaping, IEEE Antennas Wirel. Propag. Lett. 22, 2649 (2023) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.