Open Access
EPJ Appl. Metamat.
Volume 11, 2024
Article Number 4
Number of page(s) 7
Published online 01 March 2024
  1. R. Zivieri, On negative effective mass and negative group velocity in anharmonic seismic metamaterials, EPJ Appl. Metamat. 9, 10 (2022) [CrossRef] [EDP Sciences] [Google Scholar]
  2. S. Yang, K. Zhang, X. Ding, G. Yang, Q. Wu, Tailoring the scattering properties of coding metamaterials based on machine learning, EPJ Appl. Metamater. 8, 15 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  3. H. Bolat, P. Erkus, Use of polyvinyl chloride (PVC) powder and granules as aggregate replacement in concrete mixtures, Sci. Eng. Compos. Mater. 23, 209 (2016) [CrossRef] [Google Scholar]
  4. D.J. da Silva, G.B. Gramcianinov, P.Z. Jorge, V.B. Malaquias, A.A. Mori, M.H. Hirata, S.A.M. Lopes, L.A. Bueno, M. Champeau, D.J. Carastan, PVC containing silver nanoparticles with antimicrobial properties effective against SARS-CoV-2, Front. Chem. 11, 1083399 (2023) [CrossRef] [Google Scholar]
  5. N.M.K. Abdel-Gawad, A.Z. El Dein, D.-E.A. Mansour, H.M. Ahmed, M.M.F. Darwish, M. Lehtonen, Multiple enhancement of PVC cable insulation using functionalized SiO2 nanoparticles based nanocomposites, Electric Power Syst. Res. 163, 612 (2018) [CrossRef] [Google Scholar]
  6. K. Salasinska, K. Mizera, M. Celiński, P. Kozikowski, J. Mirowski, A. Gajek, Thermal properties and fire behavior of a flexible poly(vinyl chloride) modified with complex of 3-aminotriazole with zinc phosphate, Fire Safety Saf. J. 122, 103326 (2021) [Google Scholar]
  7. A.A. Basfar, 2002. Flame retardantcy of radiation cross-linked poly (vinyl chloride) (PVC) used as an insulating material for wire and cable, Polymer Degrad. Stabil. 77, 221 (2022) [CrossRef] [Google Scholar]
  8. P. Ye-Tang, T. Cédric, W. De-Yi, Hierarchical nanoporous silica doped with tin as novel multifunctional hybrid material to flexible poly (vinyl chloride) with greatly improved flame retardancy and mechanical properties, Chem. Eng. J. 295, 451 (2016) [CrossRef] [Google Scholar]
  9. G. Chai, G. Zhu, S. Gao, J. Zhou, Y. Gao, Y. Wang, On improving flame retardant and smoke suppression efficiency of epoxy resin doped with aluminum tri-hydroxide, Compos. Adv. Mater. 28, 1 (2019) [Google Scholar]
  10. A. Çetin, S. Gamze Erzengin, F. Burcu Alp, Various combinations of flame retardants for poly (vinyl chloride), Open Chem. 17, 980 (2019) [CrossRef] [Google Scholar]
  11. F. Alfawakhiri, C.J. Carter, Selecting the “right“ fire resistant design, Pract. Period. Struct. Des. Construct. 10, 3 (2005) [Google Scholar]
  12. Dao The Minh, Nghien cuu che tao vat lieu nanocompozit tren co so polyme nhiet deo (PE, PVC) va nano- clay de lam cap dien ben thoi tiet va kho chay., Science and technology topics (Vietnam Academy of Science and Technology, 2006) [Google Scholar]
  13. A.R. Horrocks, 6 – Nanocomposites II: potential applications for nanocomposite-based flame-retardant systems, in Advances in Fire Retardant Materials (Elsevier, 2008), pp. 124–158 [Google Scholar]
  14. S. Jayrajsinh, D. Gauri Shankar, Y.K. Agrawal, D. Lateef Bakre, Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review, J. Drug Deliv. Sci. Technol. 39, 200 (2017) [CrossRef] [Google Scholar]
  15. H. Pi, S. Guo, Y. Ning, Mechanochemical improvement of the flame-retardant and mechanical properties of zinc borate and zinc borate– aluminum trihydrate-filled poly(vinyl chloride), J. Appl. Polymer Sci. 89, 753 (2023) [Google Scholar]
  16. Y. Ning, S. Guo, Flame-retardant and smoke-suppressant properties of zinc borate and aluminum trihydrate-filled rigid PVC, J. Appl. Polymer Sci. 77, 3119 (2000) [CrossRef] [Google Scholar]
  17. Y. Li, L. Qi, Y. Liu, J. Qiao, M. Wang, X. Liu, S. Li, Recent advances in halogen-free flame retardants forpolyolefin cable sheath materials, Polymers 14, 1 (2022) [Google Scholar]
  18. W. Liu, Y. Jiang, N. Wang, W. Fu, Recent progress in flame retardant technology of battery: a review, Resources Chem. Mater. 2, 80 (2023) [Google Scholar]
  19. D.-S. Kim, B.-M. Lee, H.-R. Kim, S. Park, J.-S. Park, D. Hwang, J. Kim, J.-H. Choi, Preparation and characterization of poly(ethylene-co-vinyl acetate)/high-density polyethylene/aluminum hydroxide/clay composites by electron beam irradiation, Polymers Adv. Technol. 35, e6210 (2024) [Google Scholar]
  20. C. Kaynak, E. Ibibikcan, Contribution of nanoclays to the flame retardancy of polyethylene-based cable insulation materials with aluminum hydroxide and zinc borate, J. Fire Sci. 32, 121 (2013) [Google Scholar]
  21. A. Yücesoy, Y. Balçik Tamer, H. Berber, Improvement of flame retardancy and thermal stability of highly loaded low density polyethylene/magnesium hydroxide composites, J. Appl. Polymer Sci. 140, e54107 (2023) [Google Scholar]
  22. M.R. Petersen, A. Chen, M. Roll, S.J. Jung, M. Yossef, Mechanical properties of fire-retardant glass fiber-reinforced polymer materials with alumina tri-hydrate filler, Composites Part B: Eng. 78, 109 (2015) [CrossRef] [Google Scholar]
  23. E.R. Ghomi, F. Khosravi, Z. Mossayebi, A.S. Ardahaei, F.M. Dehaghi, M. Khorasani, R.E. Neisiany, O. Das, A.M. Rhoda Afriyie Mensah, L. Jiang, Q. Xu, M. Försth, F. Berto, S. Ramakrishna, The flame retardancy of polyethylene composites: from fundamental concepts to nanocomposites, Molecules 25, 5157 (2020) [CrossRef] [Google Scholar]
  24. L.D. Ha, Selection of suitable data normalization method to combine with the CRADIS method for making multi-criteria decision, Appl. Eng. Lett. 8, 24 (2023) [CrossRef] [Google Scholar]
  25. D.D. Trung, Application of EDAS, MARCOS, TOPSIS, MOORA and PIV methods for multi-criteria decision making in milling process, Strojnícky časopis, J. Mech. Eng. 71, 69 (2021) [Google Scholar]
  26. D.D. Trung, N. Nhu Tung, Applying COCOSO, MABAC, MAIRCA, EAMR, TOPSIS and weight determination methods for multi-criteria decision making in hole turning process, Strojnícky časopis, J. Mech. Eng. 72, 15 (2022) [Google Scholar]
  27. M. Baydas, Comparison of the performances of MCDM methods under uncertainty: an analysis on bist SME industry index, OPUS J. Soc. Res. 19, 308 (2021) [Google Scholar]
  28. M. Baydaş, T. Eren, Ž. Stević, V. Starčević, R. Parlakkay, Proposal for an objective binary benchmarking framework that validates each other for comparing MCDM methods through data analytics, PeerJ Computer Comput. Sci. 9, e1350 (2023) [CrossRef] [Google Scholar]
  29. A. Sotoudeh-Anvari, Root Assessment Method (RAM): a novel multi-criteria decision making method and its applications in sustainability challenges, J. Cleaner Prod. 423, 138695 (2023) [CrossRef] [Google Scholar]
  30. H.X. Thinh, Multi-objective optimization of turning process by FUCA method, Strojnícky časopis, J. Mech. Eng. 73, 55 (2022) [Google Scholar]
  31. D.D. Trung, H.X. Thinh, A multi-criteria decision-making in turning process using the MAIRCA, EAMR, MARCOS and TOPSIS methods: a comparative study, Adv. Prod. Eng. Manage. 16, 443 (2021) [Google Scholar]
  32. F. Ecer, D. Pamucar, A novel LOPCOW-DOBI multi-criteria sustainability performance assessment methodology: an application in developing country banking sector, Omega 112, 102690 (2022) [CrossRef] [Google Scholar]
  33. T.C. Doanh, V.M. Tan, H.T. Oanh, H.T. Nhung, H.M. Ha, Preparation and charaterization of flame retardant nanocomposite based on polyvinyl chloride, J. Sci. Technol. 57, 115 (2021) [Google Scholar]
  34. D. Bozanic, A. Milic, D. Tesic, W. Sałabun, D. Pamucar, D numbers – fucom – fuzzy rafsi model for selecting the group of construction machines for enabling mobility, FACTA Universitatis, Mech. Eng. 19, 447 (2021) [Google Scholar]
  35. L.J. Muhammad, I. Badi, A.A. Haruna, I.A. Mohammed, Selecting the best municipal solid waste management techniques in nigeria using multi criteria decision making techniques, Rep. Mech. Eng. 2, 180 (2021) [CrossRef] [Google Scholar]
  36. M. Radovanović, A. Petrovski, A. Behlić, M. Perišić, M. Samopjan, B. Lakanović, Application model of MCDM for selection of automatic rifle, J. Decis. Analyt. Intell. Comput. 3, 185 (2023) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.