Open Access
EPJ Appl. Metamat.
Volume 10, 2023
Article Number 4
Number of page(s) 6
Published online 08 May 2023
  1. J. Polo, T. Mackay, A. Lakhtakia, Electromagnetic surface waves: a modern perspective (Elsevier, 2013) [Google Scholar]
  2. S.J. Park, Y.H. Ahn, Detection of polystyrene microplastic particles in water using surface-functionalized terahertz microfluidic metamaterials, Appl. Sci. 12, 7102 (2022) [CrossRef] [Google Scholar]
  3. S.J. Park, J. Cunningham, Effect of substrate etching on terahertz metamaterial resonances and its liquid sensing applications, Sensors 20, 3133 (2020) [CrossRef] [Google Scholar]
  4. D. Li, F. Hu, H. Zhang, Z. Chen, G. Huang, F. Tang, S. Lin, Y. Zou, Y. Zhou, Identification of early-stage cervical cancer tissue using metamaterial terahertz biosensor with two resonant absorption frequencies, IEEE J. Selected Topics Quantum Electr. 27, 1 (2021) [Google Scholar]
  5. A. Oueslati, A. Hlali, H. Zairi, Modeling of a metamaterial biosensor based on split ring resonators for cancer cells detection, in 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD). (IEEE, 2021), pp. 392–396 [CrossRef] [Google Scholar]
  6. M. Zhu, L. Zhang, S. Ma, J. Wang, J. Su, A. Liu, Terahertz metamaterial designs for capturing and detecting circulating tumor cells, Mater. Res. Express 6, 045805 (2019) [CrossRef] [Google Scholar]
  7. L. Liu, T. Li, Z. Liu, F. Fan, H. Yuan, Z. Zhang, S. Chang, X. Zhang, Terahertz polarization sensing based on metasurface microsensor display anti-proliferation of tumor cells with aspirin, Biomed. Optics Express 11, 2416 (2020) [CrossRef] [Google Scholar]
  8. J. Pendry, L. Martin-Moreno, F. Garcia-Vidal, Mimicking surface plasmons with structured surfaces, Science 305, 847 (2004) [Google Scholar]
  9. U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124, 1866 (1961) [CrossRef] [Google Scholar]
  10. V. Fedotov, M. Rose, S. Prosvirnin, N. Papasimakis, N. Zheludev, Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry, Phys. Rev. Lett. 99, 147401 (2007) [CrossRef] [Google Scholar]
  11. R. Singh, I.A. Al-Naib, M. Koch, W. Zhang, Sharp fano resonances in thz metamaterials, Opt. Express 19, 6312 (2011) [CrossRef] [Google Scholar]
  12. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, Plasmonic analogue of electromagnetically induced transparency at the drude damping limit, Nat. Mater. 8, 758 (2009) [CrossRef] [Google Scholar]
  13. L. Zhu, H. Li, L. Dong, W. Zhou, M. Rong, X. Zhang, J. Guo, Dual-band electromagnetically induced transparency (eit) terahertz metamaterial sensor, Opt. Mater. Express 11, 2109 (2021) [CrossRef] [Google Scholar]
  14. T. Wang, T. Li, H. Yao, Y. Lu, X. Yan, M. Cao, L. Liang, M. Yang, J. Yao, High-sensitivity modulation of electromagnetically induced transparency analog in a thz asymmetric metasurface integrating perovskite and graphene, Photonics Res. 10, 2317 (2022) [CrossRef] [Google Scholar]
  15. S. Wang, S. Wang, X. Zhao, J. Zhu, Q. Li, T. Chen, Excitation of electromagnetically induced transparency effect in asymmetrical planar terahertz toroidal dipole metasurfaces, J. Infrared Millimeter Terahertz Waves 42, 40 (2021) [CrossRef] [Google Scholar]
  16. Z. Liao, S. Liu, H.F. Ma, C. Li, B. Jin, T.J. Cui, Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies, Sci. Rep. 6, 1 (2016) [CrossRef] [Google Scholar]
  17. S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, R. Singh, Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials, Sci. Rep. 6, 27596 (2016) [CrossRef] [Google Scholar]
  18. S. Nourinovin, M.M. Rahman, M.P. Philpott, A. Alomainy, Terahertz characterisation of artificially cultured oral cancer with stem cell lines for healthcare applications, in 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA). (IEEE, 2022), pp. 1–5 [Google Scholar]
  19. S. Nourinovin, A. Alomainy, A terahertz electromagnetically induced transparency-like metamaterial for biosensing, in 2021 15th European Conference on Antennas and Propagation (EuCAP). (IEEE, 2021), pp. 1–5 [Google Scholar]
  20. B. Luk'yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater. 9, 707 (2010) [CrossRef] [Google Scholar]
  21. M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N.I. Zheludev, C. Lee, R. Singh, Reconfigurable mems fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies, Nat. Commun. 9, 4056 (2018) [CrossRef] [Google Scholar]
  22. H. Yao, H. Mei, W. Zhang, S. Zhong, X. Wang, Theoretical and experimental research on terahertz metamaterial sensor with flexible substrate, IEEE Photon. J. 14, 3700109 (2021) [Google Scholar]
  23. M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, M. Zhang et al., Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells, Opt. Express 27, 19520 (2019) [CrossRef] [Google Scholar]
  24. X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie et al., The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells, Biosens. Bioelectr. 126, 485 (2019) [CrossRef] [Google Scholar]
  25. T. Lin, Y. Huang, S. Zhong, Y. Zhong, Z. Zhang, Q. Zeng, Y. Yu, Z. Peng, Field manipulation of electromagnetically induced transparency analogue in terahertz metamaterials for enhancing liquid sensing, Opt. Lasers Eng. 157, 107127 (2022) [CrossRef] [Google Scholar]
  26. Y. Hu, X. Zhou, Q. Sun, G. Zeng, Y. Xiong, Sensitive detection of doped polymer thin films using terahertz metamaterial based on analog of electromagnetically induced transparency, IEEE Sens. J. 23, 3431 (2023) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.