Open Access
EPJ Appl. Metamat.
Volume 10, 2023
Article Number 3
Number of page(s) 9
Published online 30 January 2023
  1. A. Shah et al., Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites, Carbon 96, 987 (2016) [CrossRef] [Google Scholar]
  2. A. Shah et al., Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/epoxy resin composite plates, Compos. Struct. 131, 1132 (2015) [CrossRef] [Google Scholar]
  3. L. Huang et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics, Small 15, 1902730 (2019) [CrossRef] [Google Scholar]
  4. Q. Yuchang et al., Graphene nanosheets/BaTiO3 ceramics as highly efficient electromagnetic interference shielding materials in the X-band, J. Mater. Chem. C 4, 371 (2016) [CrossRef] [Google Scholar]
  5. L. Huang et al., Novel broadband electromagnetic-wave absorption metasurfaces composed of C-doped FeCoNiSiAl high-entropy-alloy ribbons with hierarchical nanostructures, Compos. Part B: Eng. 244, 110182 (2022) [CrossRef] [Google Scholar]
  6. H. Pang et al., Research advances in composition, structure and mechanisms of microwave absorbing materials, Compos. Part B: Eng. 224, 109173 (2021) [CrossRef] [Google Scholar]
  7. Z. Zhang et al., A review on metal–organic framework-derived porous carbon-based novel microwave absorption materials, Nano-Micro Lett. 13, 56 (2021) [CrossRef] [Google Scholar]
  8. H. Zhao et al., Biomass-derived porous carbon-based nanostructures for microwave absorption, Nano-Micro Lett. 11, 24 (2019) [CrossRef] [Google Scholar]
  9. C. Zhang et al., Structure engineering of graphene nanocages toward high-performance microwave absorption applications, Adv. Opt. Mater. 10, 2101904 (2021) [Google Scholar]
  10. X.-J. Zhang et al., Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride, ACS Appl. Mater. Interfaces 6, 7471 (2014) [CrossRef] [Google Scholar]
  11. M. Cao et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion, Small 14, 1800987 (2018) [CrossRef] [Google Scholar]
  12. H. Sun et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities, Adv. Mater. 26, 8120 (2014) [CrossRef] [Google Scholar]
  13. Y. Gao et al., Improved microwave absorbing property provided by the filler's alternating lamellar distribution of carbon nanotube/carbonyl iron/ poly (vinyl chloride) composites, Compos. Sci. Technol. 158, 175 (2018) [CrossRef] [Google Scholar]
  14. L. Huang et al., Chiral asymmetric polarizations generated by bioinspired helical carbon fibers to induce broadband microwave absorption and multispectral photonic manipulation, Adv. Opt. Mater. 10, 2200249 (2022) [CrossRef] [Google Scholar]
  15. L. Song et al., Assembled Ag-doped α-MnO2@δ-MnO2 nanocomposites with minimum lattice mismatch for broadband microwave absorption, Compos. Part B: Eng. 199, 108318 (2020) [CrossRef] [Google Scholar]
  16. Y. Qing et al., Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy-silicone, J. Alloys Compd. 583, 471 (2014) [CrossRef] [Google Scholar]
  17. K.S. Sista et al., Carbonyl iron powders as absorption material for microwave interference shielding: a review, J. Alloys Compd. 853, 157251 (2021) [CrossRef] [Google Scholar]
  18. Z. Jia et al., Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon, Compos. Part B: Eng. 176, 107246 (2019) [CrossRef] [Google Scholar]
  19. L. Huang et al., Ultra-flexible composite metamaterials with enhanced and tunable microwave absorption performance, Compos. Struct. 229, 111469 (2019) [CrossRef] [Google Scholar]
  20. Y. Li et al., Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption, Small 18, 2270016 (2022) [CrossRef] [Google Scholar]
  21. J. Ding et al., Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption, Small 15, 1902885 (2019) [CrossRef] [Google Scholar]
  22. Z. Zou et al., 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18 GHz, Carbon 193, 182 (2022) [CrossRef] [Google Scholar]
  23. P. Liu et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption, Adv. Funct. Mater. 31, 2102812 (2021) [CrossRef] [Google Scholar]
  24. W.-L. Song et al., Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from three-dimensional printed patterned shells, ACS Appl. Mater. Interfaces 9, 43179 (2017) [CrossRef] [Google Scholar]
  25. M. Li et al., A broadband compatible multispectral metamaterial absorber for visible, near-infrared, and microwave bands, Adv. Opt. Mater. 6, 1701238 (2018) [CrossRef] [Google Scholar]
  26. T. Kim et al., Hierarchical metamaterials for multispectral camouflage of infrared and microwaves, Adv. Functional Mater. 29, 1807319 (2019) [CrossRef] [Google Scholar]
  27. C. Zhang et al., Broadband metamaterial for optical transparency and microwave absorption, Appl. Phys. Lett. 110, 143511 (2017) [CrossRef] [Google Scholar]
  28. K.-L. Zhang et al., Weather-manipulated smart broadband electromagnetic metamaterials, ACS Appl. Mater. Interfaces 10, 40815 (2018) [CrossRef] [Google Scholar]
  29. D. Hu et al., Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators, Adv. Opt. Mater. 5, 1700109 (2017) [CrossRef] [Google Scholar]
  30. W. Li et al., Broadband radar cross section reduction by in-plane integration of scattering metasurfaces and magnetic absorbing materials, Res. Phys. 12, 1964 (2019) [Google Scholar]
  31. F. Ding et al., Ultra-broadband microwave metamaterial absorber, Appl. Phys. Lett. 100, 103506 (2012) [CrossRef] [Google Scholar]
  32. L. Huang et al., Broadband microwave absorption and adaptable multifunctionality of carbonaceous chiral metamaterials under deep subwavelength thickness, ACS Appl. Electr. Mater. (2021) [Google Scholar]
  33. L. Huang et al., Bionic composite metamaterials for harvesting of microwave and integration of multifunctionality, Compos. Sci. Technol. 204, 108640 (2021) [CrossRef] [Google Scholar]
  34. L. Huang et al., Bioinspired gyrotropic metamaterials with multifarious wave adaptability and multifunctionality, Adv. Opt. Mater. 8, 2000012 (2020) [CrossRef] [Google Scholar]
  35. K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers, IEEE Trans. Antennas Propagat. 48, 1230 (2000) [CrossRef] [Google Scholar]
  36. M. Ning et al., Dumbbell-Like Fe3O4@N-doped carbon@2H/1T-MoS2 with tailored magnetic and dielectric loss for efficient microwave absorbing, ACS Appl. Mater. Interfaces (2021) [Google Scholar]
  37. Z. Zhang et al., Synthesizing CNx heterostructures on ferromagnetic nanoparticles for improving microwave absorption property, Appl. Surf. Sci. 564, 150480 (2021) [CrossRef] [Google Scholar]
  38. Q. Li et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures, Adv. Sci. 6, 1801057 (2019) [CrossRef] [Google Scholar]
  39. T. Jang et al., Transparent and flexible polarization-independent microwave broadband absorber, ACS Photonics 1, 279 (2014) [CrossRef] [Google Scholar]
  40. Y. Li et al., Refractory metamaterial microwave absorber with strong absorption insensitive to temperature, Adv. Opt. Mater. 6, 1800691 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.