EPJ Appl. Metamat.
Volume 9, 2022
Metamaterials for Novel Wave Phenomena in Microwaves, Optics, and Mechanics
Article Number 8
Number of page(s) 16
Published online 10 June 2022
  1. M.I. Vishik, L.A. Lyusternik, The solution of some perturbation problems for matrices and selfadjoint or non-selfadjoint differential equations I, Russ. Math. Surv. 15, 1 (1960) [CrossRef] [Google Scholar]
  2. P. Lancaster, On eigenvalues of matrices dependent on a parameter, Numer. Math. 6, 377 (1964) [CrossRef] [Google Scholar]
  3. A.P. Seyranian, Sensitivity analysis of multiple eigenvalues, J. Struct. Mech. 21, 261 (1993) [Google Scholar]
  4. T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, New York Inc., 1966) [Google Scholar]
  5. W.D. Heiss, The physics of exceptional points, J. Phys. A 45, 444016 (2012) [CrossRef] [Google Scholar]
  6. W.D. Heiss, Exceptional points of non-Hermitian operators, J. Phys. A 37, 2455 (2004) [CrossRef] [Google Scholar]
  7. W.D. Heiss, Exceptional points − their universal occurrence and their physical significance, Czechoslovak J. Phys. 54, 1091 (2004) [CrossRef] [Google Scholar]
  8. W.D. Heiss, Green's functions at exceptional points, Int. J. Theor. Phys. 54, 3954 (2015) [CrossRef] [Google Scholar]
  9. J. Schnabel, H. Cartarius, J. Main, G. Wunner, W.D. Heiss, PT-symmetric waveguide system with evidence of a third-order exceptional point, Phys. Rev. A 95, 053868 (2017) [CrossRef] [Google Scholar]
  10. J. Wiersig, Sensors operating at exceptional points: general theory, Phys. Rev. A 93, 033809 (2016) [CrossRef] [Google Scholar]
  11. J. Wiersig, Review of exceptional point-based sensors, Photonics Res. 8, 1457 (2020) [CrossRef] [Google Scholar]
  12. J. Wiersig, Robustness of exceptional-point-based sensors against parametric noise: the role of Hamiltonian and Liouvillian degeneracies, Phys. Rev. A 101, 053846 (2020) [CrossRef] [Google Scholar]
  13. A. Figotin, I. Vitebsky, Nonreciprocal magnetic photonic crystals, Phys. Rev. E 63, 066609 (2001) [CrossRef] [Google Scholar]
  14. A. Figotin, I. Vitebskiy, Oblique frozen modes in periodic layered media, Phys. Rev. E 68, 036609 (2003) [CrossRef] [Google Scholar]
  15. A. Figotin, I. Vitebskiy, Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers, Phys. Rev. E 72, 036619 (2005) [CrossRef] [Google Scholar]
  16. A. Figotin, I. Vitebskiy, Slow-wave resonance in periodic stacks of anisotropic layers, Phys. Rev. A 76, 053839 (2007) [CrossRef] [Google Scholar]
  17. M.V. Berry, Physics of nonhermitian degeneracies, Czechoslovak J. Phys. 54, 1039 (2004) [CrossRef] [Google Scholar]
  18. J. Wiersig, Prospects and fundamental limits in exceptional point-based sensing, Nat. Commun. 11, 2454 (2020) [CrossRef] [Google Scholar]
  19. Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, K. Vahala, Observation of the exceptional-point-enhanced Sagnac effect, Nature 576, 65 (2019) [CrossRef] [Google Scholar]
  20. W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, L. Yang, Exceptional points enhance sensing in an optical microcavity, Nature 548, 192 (2017) [CrossRef] [Google Scholar]
  21. H.-K. Lau, A.A. Clerk, Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing, Nat. Commun. 9, 4320 (2018) [CrossRef] [Google Scholar]
  22. W. Langbein, No exceptional precision of exceptional-point sensors, Phys. Rev. A 98, 023805 (2018) [CrossRef] [Google Scholar]
  23. M. Zhang, W. Sweeney, C.W. Hsu, L. Yang, A.D. Stone, L. Jiang, Quantum noise theory of exceptional point amplifying sensors, Phys. Rev. Lett. 123, 180501 (2019) [CrossRef] [Google Scholar]
  24. C. Chen, L. Jin, R.-B. Liu, Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system, New J. Phys. 21, 083002 (2019) [CrossRef] [Google Scholar]
  25. M.Y. Nada, M.A.K. Othman, F. Capolino, Theory of coupled resonator optical waveguides exhibiting high-order exceptional points of degeneracy, Phys. Rev. B 96, 184304 (2017) [CrossRef] [Google Scholar]
  26. A.F. Abdelshafy, M.A.K. Othman, D. Oshmarin, A.T. Almutawa, F. Capolino, Exceptional points of degeneracy in periodic coupled waveguides and the interplay of gain and radiation loss: theoretical and experimental demonstration, IEEE Trans. Antennas Propag. 67, 6909 (2019) [CrossRef] [Google Scholar]
  27. H. Kazemi, M.Y. Nada, A. Nikzamir, F. Maddaleno, F. Capolino, Experimental Demonstration of Exceptional Points of Degeneracy in Linear Time Periodic Systems and Exceptional Sensitivity, arXiv:1908.08516 (2019) [Google Scholar]
  28. H. Kazemi, M.Y. Nada, T. Mealy, A.F. Abdelshafy, F. Capolino, Exceptional points of degeneracy induced by linear time-periodic variation, Phys. Rev. Appl. 11, 014007 (2019) [CrossRef] [Google Scholar]
  29. C.M. Bender, S. Boettcher, Real spectra in Non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80, 5243 (1998) [CrossRef] [Google Scholar]
  30. J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Experimental study of active LRC circuits with PT symmetries, Phys. Rev. A 84, 040101 (2011) [CrossRef] [Google Scholar]
  31. T. Stehmann, W.D. Heiss, F.G. Scholtz, Observation of exceptional points in electronic circuits, J. Phys. A 37, 7813 (2004) [CrossRef] [Google Scholar]
  32. P.-Y. Chen et al., Generalized parity–time symmetry condition for enhanced sensor telemetry, Nat. Electr. 1, 297 (2018) [CrossRef] [Google Scholar]
  33. K. Rouhi, R. Marosi, T. Mealy, A.F. Abdelshafy, A. Figotin, F. Capolino, Exceptional degeneracies in traveling wave tubes with dispersive slow-wave structure including space-charge effect, Appl. Phys. Lett. 118, 263506 (2021) [CrossRef] [Google Scholar]
  34. A. Figotin, Exceptional points of degeneracy in traveling wave tubes, J. Math. Phys. 62, 082701 (2021) [CrossRef] [Google Scholar]
  35. P. Djorwe, Y. Pennec, B. Djafari-Rouhani, Exceptional point enhances sensitivity of optomechanical mass sensors, Phys. Rev. Appl. 12, 024002 (2019) [CrossRef] [Google Scholar]
  36. J. Ren et al., Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope, Opt. Lett. 42, 1556 (2017) [CrossRef] [Google Scholar]
  37. B.D.H. Tellegen, The gyrator, a new electric network element, Philips Res. Rep. 3, 81 (1948) [Google Scholar]
  38. D.F. Sheahan, H.J. Orchard, Integratable gyrator using M.O.S. and bipolar transistors, Electr. Lett. 2, 390 (1966) [CrossRef] [Google Scholar]
  39. T. Yanagisawa, Y. Kawashima, Active gyrator, Electr. Lett. 3, 105 (1967) [CrossRef] [Google Scholar]
  40. H.T. Chua, R.W. Newcomb, Integrated direct-coupled gyrator, Electr. Lett. 3, 182 (1967) [CrossRef] [Google Scholar]
  41. H. Th. van Looij, K.M. Adams, Wideband electronic gyrator circuit, Electr. Lett. 4, 431 (1968) [CrossRef] [Google Scholar]
  42. D.F. Sheahan, H.J. Orchard, High-quality transistorised gyrator, Electr. Lett. 2, 274 (1966) [Google Scholar]
  43. T.N. Rao, R.W. Newcomb, Direct-coupled gyrator suitable for integrated circuits and time variation, Electr. Lett. 2, 250 (1966) [CrossRef] [Google Scholar]
  44. W.H. Holmes, S. Gruetzmann, W.E. Heinlein, High-performance direct-coupled gyrators, Electr. Lett. 3, 45 (1967) [CrossRef] [Google Scholar]
  45. B. Shenoi, Practical realization of a gyrator circuit and RC-gyrator filters, IEEE Trans. Circ. Theory 12, 374 (1965) [CrossRef] [Google Scholar]
  46. A. Antoniou, Gyrators using operational amplifiers, Electr. Lett. 3, 350 (1967) [CrossRef] [Google Scholar]
  47. A. Antoniou, New gyrator circuits obtained by using nullors, Electr. Lett. 4, 87 (1968) [CrossRef] [Google Scholar]
  48. A. Antoniou, 3-terminal gyrator circuits using operational amplifiers, Electr. Lett. 4, 591 (1968) [CrossRef] [Google Scholar]
  49. H.J. Orchard, A.N. Willson, New active-gyrator circuit, Electr. Lett. 10, 261 (1974) [CrossRef] [Google Scholar]
  50. A. Antoniou, Realisation of gyrators using operational amplifiers, and their use in RC-active-network synthesis, Proc. Inst. Electr. Eng. 116, 1838 (1969) [CrossRef] [Google Scholar]
  51. A. Morse, L. Huelsman, A gyrator realization using operational amplifiers, IEEE Trans. Circ. Theory 11, 277 (1964) [CrossRef] [Google Scholar]
  52. A. Antoniou, K. Naidu, A compensation technique for a gyrator and its use in the design of a channel-bank filter, IEEE Trans. Circ. Syst. 22, 316 (1975) [CrossRef] [Google Scholar]
  53. A. Antoniou, K. Naidu, Modeling of a gyrator circuit, IEEE Trans. Circ. Theory 20, 533 (1973) [CrossRef] [Google Scholar]
  54. R.Y. Barazarte, G.G. Gonzalez, M. Ehsani, Generalized gyrator theory, IEEE Trans. Power Electr. 25, 1832 (2010) [CrossRef] [Google Scholar]
  55. A. Figotin, Synthesis of lossless electric circuits based on prescribed Jordan forms, J. Math. Phys. 61, 122703 (2020) [CrossRef] [Google Scholar]
  56. A. Figotin, Perturbations of circuit evolution matrices with Jordan blocks, J. Math. Phys. 62, 042703 (2021) [CrossRef] [Google Scholar]
  57. K. Rouhi, A. Nikzamir, A. Figotin, F. Capolino, Enhanced Sensitivity of Degenerate System Made of Two Unstable Resonators Coupled by Gyrator Operating at an Exceptional Point, arXiv:2110.01860 (2021) [Google Scholar]
  58. A. Nikzamir, K. Rouhi, A. Figotin, F. Capolino, Demonstration of Exceptional Points of Degeneracy in Gyrator-Based Circuit for High-Sensitivity Applications, arXiv:2107.00639 (2021) [Google Scholar]
  59. A. Nikzamir, K. Rouhi, A. Figotin, F. Capolino, Exceptional points of degeneracy in gyrator-based coupled resonator circuit, in 2021 Fifteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (2021), pp. 302–304 [CrossRef] [Google Scholar]
  60. K. Rouhi, H. Kazemi, A. Figotin, F. Capolino, Exceptional points of degeneracy directly induced by space-time modulation of a single transmission line, IEEE Antennas Wireless Propag. Lett. 19, 1906 (2020) [CrossRef] [Google Scholar]
  61. A. Willson, H. Orchard, Realization of ideal gyrators, IEEE Trans. Circ. Syst. 21, 729 (1974) [CrossRef] [Google Scholar]
  62. C.L. Hogan, The ferromagnetic faraday effect at microwave frequencies and its applications, Rev. Mod. Phys. 25, 253 (1953) [CrossRef] [Google Scholar]
  63. C.L. Hogan, The ferromagnetic faraday effect at microwave frequencies and its applications, Bell Syst. Tech. J. 31, 1 (1952) [CrossRef] [Google Scholar]
  64. Q. Zhang, T. Guo, B.A. Khan, T. Kodera, C. Caloz, Coupling matrix synthesis of nonreciprocal lossless two-port networks using gyrators and inverters, IEEE Trans. Microw. Theory Tech. 63, 2782 (2015) [CrossRef] [Google Scholar]
  65. T. Kodera, D.L. Sounas, C. Caloz, Magnetless Nonreciprocal Metamaterial (MNM) technology: application to microwave components, IEEE Trans. Microw. Theory Tech. 61, 1030 (2013) [CrossRef] [Google Scholar]
  66. A. Toker, O. Cicekoglu, H. Kuntman, New active gyrator circuit suitable for frequency-dependent negative resistor implementation, Microelectr. J. 30, 59 (1999) [CrossRef] [Google Scholar]
  67. M. Ehsani, I. Husain, M.O. Bilgic, Power converters as natural gyrators, IEEE Trans. Circ. Syst. I 40, 946 (1993) [CrossRef] [Google Scholar]
  68. I.M. Filanovsky, Current conveyor, voltage conveyor, gyrator, in Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No. 01CH37257) (2001), pp. 314–317 [CrossRef] [Google Scholar]
  69. A. Welters, On explicit recursive formulas in the spectral perturbation analysis of a Jordan block, SIAM J. Matrix Anal. Appl. 32, 1 (2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.