Issue
EPJ Appl. Metamat.
Volume 9, 2022
Metamaterials for Novel Wave Phenomena in Microwaves, Optics, and Mechanics
Article Number 14
Number of page(s) 15
DOI https://doi.org/10.1051/epjam/2022006
Published online 01 July 2022
  1. M.I. Vishik, L.A. Lyusternik, The solution of some perturbation problems for matrices and selfadjoint or non-selfadjoint differential equations I, Russian Math. Surv. 15, 1 (1960) [CrossRef] [Google Scholar]
  2. P. Lancaster, On eigenvalues of matrices dependent on a parameter, Numerisc. Math. 6, 377 (1964) [CrossRef] [Google Scholar]
  3. T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag New York Inc., New York, 1966) [Google Scholar]
  4. W.D. Heiss, A.L. Sannino, Avoided level crossing and exceptional points, J. Phys. A: Math. General 23, 1167 (1990) [CrossRef] [Google Scholar]
  5. W.-H. Steeb, W.D. Heiss, Energy eigenvalue levels and singular point analysis, Phys. Lett. A 152, 339 (1991) [CrossRef] [Google Scholar]
  6. A.P. Seyranian, Sensitivity analysis of multiple eigenvalues, J. Struct. Mech. 21, 261 (1993) [Google Scholar]
  7. C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80, 5243 (1998) [CrossRef] [Google Scholar]
  8. W.D. Heiss, Repulsion of resonance states and exceptional points, Phys. Rev. E 61, 929 (2000) [CrossRef] [Google Scholar]
  9. C.M. Bender, M.V. Berry, A. Mandilara, Generalized PT symmetry and real spectra, J. Phys. A 35, L467 (2002) [CrossRef] [Google Scholar]
  10. A. Figotin, I. Vitebskiy, Oblique frozen modes in periodic layered media, Phys. Rev. E 68, 036609 (2003) [CrossRef] [Google Scholar]
  11. A. Figotin, I. Vitebskiy, Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers, Phys. Rev. E 72, 036619 (2005) [CrossRef] [Google Scholar]
  12. A. Guo et al., Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103, 093902 (2009) [CrossRef] [Google Scholar]
  13. W.D. Heiss, The physics of exceptional points, J. Phys. A 45, 444016 (2012) [CrossRef] [Google Scholar]
  14. B. Peng et al., Parity–time-symmetric whispering-gallery microcavities, Nat. Phys. 10, 394 (2014) [CrossRef] [Google Scholar]
  15. F. Alex, V. Ilya, Slow light in photonic crystals, Waves Random Complex Media 16, 293 (2006) [CrossRef] [Google Scholar]
  16. F. Alex, V. Ilya, Frozen light in photonic crystals with degenerate band edge, Phys. Rev. E. 74, 066613 (2006) [CrossRef] [Google Scholar]
  17. M.V. Berry, Physics of nonhermitian degeneracies, Czechoslovak J. Phys. 54, 1039 (2004) [CrossRef] [Google Scholar]
  18. P.-Y. Chen et al., Generalized parity–time symmetry condition for enhanced sensor telemetry, Nat. Electr. 1, 297 (2018) [CrossRef] [Google Scholar]
  19. M. Sakhdari, M. Farhat, P.-Y. Chen, PT-symmetric metasurfaces: wave manipulation and sensing using singular points, New J. Phys. 19, 065002 (2017) [CrossRef] [Google Scholar]
  20. J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Experimental study of active LRC circuits with PT symmetries, Phys. Rev. A 84, 040101 (2011) [CrossRef] [Google Scholar]
  21. H. Hodaei, M.-A. Miri, M. Heinrich, D.N. Christodoulides, M. Khajavikhan, Parity-time-symmetric microring lasers, Science 346, 975 (2014) [CrossRef] [Google Scholar]
  22. T. Stehmann, W.D. Heiss, F.G. Scholtz, Observation of exceptional points in electronic circuits, J. Phys. A: Math. General 37, 7813 (2004) [CrossRef] [Google Scholar]
  23. K. Rouhi, A. Nikzamir, A. Figotin, F. Capolino, Exceptional point in a degenerate system made of a gyrator and two unstable resonators, Phys. Rev. A 105, 032214 (2022) [CrossRef] [Google Scholar]
  24. A. Nikzamir, K. Rouhi, A. Figotin, F. Capolino, Demonstration of exceptional points of degeneracy in gyrator-based circuit for high-sensitivity applications., arXiv preprint arXiv:2107.00639 (2021) [Google Scholar]
  25. H. Kazemi, M.Y. Nada, A. Nikzamir, F. Maddaleno, F. Capolino, Experimental demonstration of exceptional points of degeneracy in linear time periodic systems and exceptional sensitivity, J. Appl. Phys. 131, 144502 (2022) [Google Scholar]
  26. H. Kazemi, M.Y. Nada, T. Mealy, A.F. Abdelshafy, F. Capolino, Exceptional points of degeneracy induced by linear time-periodic variation, Phys. Rev. Appl. 11, 014007 (2019) [CrossRef] [Google Scholar]
  27. H. Kazemi et al., Ultra-sensitive radio frequency biosensor at an exceptional point of degeneracy induced by time modulation, IEEE Sensors J. 21 (2021) [Google Scholar]
  28. A. Figotin, I. Vitebskiy, Oblique frozen modes in periodic layered media, Phys. Rev. E 68, 036609 (2003) [CrossRef] [Google Scholar]
  29. M.Y. Nada, M.A.K. Othman, F. Capolino, Theory of coupled resonator optical waveguides exhibiting high-order exceptional points of degeneracy, Phys. Rev. B 96, 184304 (2017) [CrossRef] [Google Scholar]
  30. A.F. Abdelshafy, T. Mealy, E. Hafezi, A. Nikzamir, F. Capolino, Exceptional degeneracy in a waveguide periodically loaded with discrete gain and radiation loss elements, Appl. Phys. Lett. 118, 224102 (2021) [CrossRef] [Google Scholar]
  31. P.-J. Chen, S. Saati, R. Varma, M.S. Humayun, Y.-C. Tai, Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant, J. Microelectromech. Syst. 19, 721 (2010) [CrossRef] [Google Scholar]
  32. T.Q. Trung, S. Ramasundaram, B.-U. Hwang, N.-E. Lee, An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics, Adv. Mater. 28, 502 (2016) [CrossRef] [Google Scholar]
  33. Y. Feng, L. Xie, Q. Chen, L.-R. Zheng, Low-cost printed chipless RFID humidity sensor tag for intelligent packaging, IEEE Sensors J. 15, 3201 (2015) [CrossRef] [Google Scholar]
  34. Y. Qian, N. Sahar, D. Prativa, N. Sangjun, H. Emily, K. Taeil, E. Rahim, All-3D-Printed, Flexible, and Hybrid Wearable Bioelectronic Tactile Sensors Using Biocompatible Nanocomposites for Health Monitoring, Adv. Mater. Technol. 7, 2101034 (2021) [Google Scholar]
  35. K. Rouhi, R. Marosi, T. Mealy, A.F. Abdelshafy, A. Figotin, F. Capolino, Exceptional degeneracies in traveling wave tubes with dispersive slow-wave structure including space-charge effect, Appl. Phys. Lett. 118, 263506 (2021) [CrossRef] [Google Scholar]
  36. P.-J. Chen, D.C. Rodger, S. Saati, M.S. Humayun, Y.-C. Tai, Microfabricated implantable parylene-based wireless passive intraocular pressure sensors, J. Microelectromech. Syst. 17, 1342 (2008) [CrossRef] [Google Scholar]
  37. S.R. Corrie, J.W. Coffey, J. Islam, K.A. Markey, M.A.F. Kendall, Blood, sweat, and tears: developing clinically relevant protein biosensors for integrated body fluid analysis, The Analyst 140, 4350 (2015) [CrossRef] [Google Scholar]
  38. P. Tseng, B. Napier, L. Garbarini, D.L. Kaplan, F.G. Omenetto, Functional, RF‐trilayer sensors for tooth‐mounted, wireless monitoring of the oral cavity and food consumption, Adv. Mater. 30, 1703257 (2018) [CrossRef] [Google Scholar]
  39. Y.J. Zhang et al., Noninvasive glucose sensor based on parity-time symmetry, Phys. Rev. Appl. 11, 044049 (2019) [CrossRef] [Google Scholar]
  40. Z.-P. Liu et al., Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition, Phys. Rev. Lett. 117, 110802 (2016) [CrossRef] [Google Scholar]
  41. J. Wiersig, Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection, Phys. Rev. Lett. 112, 203901 (2014) [CrossRef] [Google Scholar]
  42. J. Wiersig, Sensors operating at exceptional points: general theory, Phys. Rev. A 93, 033809 (2016) [CrossRef] [Google Scholar]
  43. M.-A. Miri, A. Alù, Exceptional points in optics and photonics, Science 363, 6422 (2019) [Google Scholar]
  44. C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Observation of parity-time symmetry in optics, Nat. Phys. 6, 192 (2010) [CrossRef] [Google Scholar]
  45. L. Feng, Z.J. Wong, R.-M. Ma, Y. Wang, X. Zhang, Single-mode laser by parity-time symmetry breaking, Science 346, 972 (2014) [CrossRef] [Google Scholar]
  46. A. Figotin, Perturbations of circuit evolution matrices with Jordan blocks, J. Math. Phys. 62, 042703 (2021) [CrossRef] [Google Scholar]
  47. A. Figotin, Synthesis of lossless electric circuits based on prescribed Jordan forms, J. Math. Phys. 61, 122703 (2020) [CrossRef] [Google Scholar]
  48. B.D.H. Tellegen, The gyrator, a new electric network element, Philips Res. Rep. 3, 81 (1948) [Google Scholar]
  49. A. Antoniou, Gyrators using operational amplifiers, Electr. Lett. 3, 350 (1967) [CrossRef] [Google Scholar]
  50. M. Ehsani, I. Husain, M.O. Bilgic, Power converters as natural gyrators, IEEE Trans. Circ. Syst I 40, 946 (1993) [CrossRef] [Google Scholar]
  51. W.H. Holmes, S. Gruetzmann, W.E. Heinlein, High-performance direct-coupled gyrators, Electr. Lett. 3, 45 (1967) [CrossRef] [Google Scholar]
  52. A. Nikzamir, K. Rouhi, A. Figotin, F. Capolino, Exceptional points of degeneracy in gyrator-based coupled resonator circuit, in 2021 Fifteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (2021), pp. 302–304 [Google Scholar]
  53. D. Oshmarin, A.F. Abdelshafy, A. Nikzamir, M.M. Green, F. Capolino, Experimental demonstration of a new oscillator concept based on degenerate band edge in microstrip circuit, arXiv preprint arXiv:2109.07002 (2021) [Google Scholar]
  54. S. Kananian, G. Alexopoulos, A.S.Y. Poon, Coupling-independent real-time wireless resistive sensing through nonlinear PT symmetry, Phys. Rev. Appl. 14, 064072 (2020) [CrossRef] [Google Scholar]
  55. S. Ramezanpour, A. Bogdanov, Tuning exceptional points with Kerr nonlinearity, Phys. Rev. A 103, 043510 (2021) [CrossRef] [Google Scholar]
  56. J.A. Richards, Analysis of Periodically Time-Varying Systems (Springer, Berlin Heidelberg, 1983) [CrossRef] [Google Scholar]
  57. A. Welters, On explicit recursive formulas in the spectral perturbation analysis of a Jordan block, SIAM J. Matrix Anal. Appl. 32, 1 (2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.