Open Access
EPJ Appl. Metamat.
Volume 9, 2022
Article Number 2
Number of page(s) 19
Published online 03 February 2022
  1. E. Macé, I. Cohen, G. Montaldo, R. Miles, M. Fink, M. Tanter, In vivo mapping of brain elasticity in small animals using shear wave imaging, IEEE Trans. Med. Imag. 30, 550–558 (2010) [Google Scholar]
  2. P. Guéguen, P. Yves Bard, F.J. Chávez-García, Site-city seismic interaction in mexico city -like environments: an analytical study, Bull. Seismolog. Soc. Am. 92, 794–811 (2002) [CrossRef] [Google Scholar]
  3. S. Brûlé, E.H. Javelaud, S. Enoch, S. Guenneau, Experiments on seismic metamaterials: molding surface waves, Phys. Rev. Lett. 112, 133901 (2014) [CrossRef] [Google Scholar]
  4. Y. Achaoui, T. Antonakakis, S. Brûlé, R.V. Craster, S. Enoch, S. Guenneau, Clamped seismic metamaterials: ultra-low frequency stop bands, New J. Phys. 19, 063022 (2017) [CrossRef] [Google Scholar]
  5. M. Miniaci, A. Krushynska, F. Bosia, N.M. Pugno, Large scale mechanical metamaterials as seismic shields, New J. Phys. 18, 083041 (2016) [CrossRef] [Google Scholar]
  6. A. Palermo, S. Krödel, K.H. Matlack, R. Zaccherini, V.K. Dertimanis, E.N. Chatzi, A. Marzani, C. Daraio, Hybridization of guided surface acoustic modes in unconsolidated granular media by a resonant metasurface, Phys. Rev. Appl. 9, 054026 (2018) [CrossRef] [Google Scholar]
  7. D. Komatitsch, J.-P. Vilotte, The spectral element method: an efficient tool to simulate the seismic response of 2d and 3d geological structures, Bull. Seismolog. Soc. Am. 88, 368–392 (1998) [Google Scholar]
  8. B. Lombard, J. Piraux, Numerical treatment of two-dimensional interfaces for acoustic and elastic waves, J. Comput. Phys. 195, 90–116 (2004) [CrossRef] [Google Scholar]
  9. A. Colombi, S. Guenneau, P. Roux, R.V. Craster, Transformation seismology: composite soil lenses for steering surface elastic rayleigh waves, Sci. Rep. 6, 1–9 (2016) [CrossRef] [Google Scholar]
  10. R. Aznavourian, T.M. Puvirajesinghe, S. Brûlé, S. Enoch, S. Guenneau, Spanning the scales of mechanical metamaterials using time domain simulations in transformed crystals, graphene flakes and structured soils, J. Phys.: Condens. Matter 29, 433004 (2017) [CrossRef] [Google Scholar]
  11. M. Kadic, T. Bückmann, R. Schittny, M. Wegener, Metamaterials beyond electromagnetism, Rep. Prog. Phys. 76, 126501 (2013) [CrossRef] [Google Scholar]
  12. A. Nicolet, J.-F. Remacle, B. Meys, A. Genon, W. Legros, Transformation methods in computational electromagnetism, J. Appl. Phys. 75, 6036–6038 (1994) [CrossRef] [Google Scholar]
  13. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114, 185–200 (1994) [CrossRef] [Google Scholar]
  14. A. Diatta, M. Kadic, M. Wegener, S. Guenneau, Scattering problems in elastodynamics, Phys. Rev. B 94, 100105 (2016) [CrossRef] [Google Scholar]
  15. Z.A. Kudyshev, V.M. Shalaev, A. Boltasseva, Machine learning for integrated quantum photonics, ACS Photonics 8, 34–36 (2020) [Google Scholar]
  16. W.W. Ahmed, M. Farhat, X. Zhang, Y. Wu, Deterministic and probabilistic deep learning models for inverse design of broadband acoustic cloak, Phys. Rev. Res. 3, 013142 (2021) [CrossRef] [Google Scholar]
  17. S. Chu, A. Vallecchi, C.J. Stevens, E. Shamonina, Fields and coupling between coils embedded in conductive environments, EPJ Appl. Metamat. 5, 2 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  18. R. Palmeri, T. Isernia, Inverse design of ebg waveguides through scattering matrices, EPJ Appl. Metamat. 7, 10 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  19. L. Pomot, C. Payan, M. Remillieux, S. Guenneau, Acoustic cloaking: Geometric transform, homogenization and a genetic algorithm, Wave Motion 92, 102413 (2020) [CrossRef] [Google Scholar]
  20. L.A. Gatys, A.S. Ecker, M. Bethge, Image style transfer using convolutional neural networks, in Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 2414–2423 [Google Scholar]
  21. Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, M. Song, Neural style transfer: a review, IEEE Trans. Visual. Comput. Graph. 26, 3365–3385 (2019) [Google Scholar]
  22. R. Aznavourian, S. Guenneau, Morphing for faster computations in transformation optics, Opt. Express 22, 28301–28315 (2014) [CrossRef] [Google Scholar]
  23. D. Terzopoulos, J. Platt, A. Barr, K. Fleischer, Elastically deformable models, in Proceedings of the 14th annual conference on Computer graphics and interactive techniques (1987), pp. 205–214 [Google Scholar]
  24. U. Leonhardt, T. Philbin, Geometry and light: the science of invisibility (Courier Corporation, 2010) [Google Scholar]
  25. K. Yee, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media, IEEE Trans. Antennas Propag. 14, 302–307 (1966) [CrossRef] [Google Scholar]
  26. A. Hrennikoff, Solution of problems of elasticity by the framework method, J. Appl. Mech. 8, A169–A175 (1941) [CrossRef] [Google Scholar]
  27. R. Courant et al., Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc. 49, 1–23 (1943) [CrossRef] [Google Scholar]
  28. A. Bossavit, Solving maxwell equations in a closed cavity, and the question of spurious modes', IEEE Trans. Magn. 26, 702–705 (1990) [CrossRef] [Google Scholar]
  29. R. Courant, K. Friedrichs, H. Lewy, Über die partiellen differenzengleichungen der mathematischen physik, Math. Annalen 100, 32–74 (1928) [CrossRef] [Google Scholar]
  30. S.-Y. Lee, K.-Y. Chwa, J. Hahn, S.Y. Shin, Image morphing using deformation techniques, J. Visual. Comput Anim. 7, 3–23 (1996) [CrossRef] [Google Scholar]
  31. xiberpix, Sqirlzmorph., 2009 [Google Scholar]
  32. E. Bossy, Simsonic. [Google Scholar]
  33. E. Bossy, M. Talmant, P. Laugier, Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2d simulation study, J. Acoust. Soc. Am. 112, 297–307 (2002) [CrossRef] [Google Scholar]
  34. Y. Kartynnik, A. Ablavatski, I. Grishchenko, M. Grundmann, Real-time facial surface geometry from monocular video on mobile gpus. arXiv:1907.06724 (2019) [Google Scholar]
  35. A. Zadeh, Y.C. Lim, T. Baltrusaitis, L.-P. Morency, Convolutional experts constrained local model for 3d facial landmark detection, in Proceedings of the IEEE International Conference on Computer Vision Workshops (2017), pp. 2519–2528 [Google Scholar]
  36. F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C.-L. Chang, M. Grundmann, Mediapipe hands: On-device real-time hand tracking. arXiv:2006.10214 (2020) [Google Scholar]
  37. L. Ge, Z. Ren, Y. Li, Z. Xue, Y. Wang, J. Cai, J. Yuan, 3d hand shape and pose estimation from a single rgb image, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019) [Google Scholar]
  38. G. Ghiasi, H. Lee, M. Kudlur, V. Dumoulin, J. Shlens, Exploring the structure of a real-time, arbitrary neural artistic stylization network. arXiv:1705.06830 (2017) [Google Scholar]
  39. A. Mokhtari, A. Ribeiro, Global convergence of online limited memory bfgs, J. Mach. Learn. Res. 16, 3151–3181 (2015) [Google Scholar]
  40. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process. 13, 600–612 (2004) [CrossRef] [Google Scholar]
  41. B. Gralak, A. Tip, Macroscopic maxwell's equations and negative index materials, J. Math. Phys. 51, 052902 (2010) [CrossRef] [Google Scholar]
  42. C. Bellis, B. Lombard, Simulating transient wave phenomena in acoustic metamaterials using auxiliary fields, Wave Motion 86, 175–194 (2019) [CrossRef] [Google Scholar]
  43. B. Vial, Y. Hao, Topology optimized all-dielectric cloak: design, performances and modal picture of the invisibility effect, Opt. Express 23, 23551–23560 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.