Issue |
EPJ Appl. Metamat.
Volume 9, 2022
Metamaterials for Novel Wave Phenomena in Microwaves, Optics, and Mechanics
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/epjam/2021012 | |
Published online | 01 February 2022 |
- V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10, 509 (1968) [CrossRef] [Google Scholar]
- S.A. Ramakrishnan, Physics of negative refractive index materials, Rep. Prog. Phys. 68, 449 (2005) [CrossRef] [Google Scholar]
- R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292, 77 (2001) [CrossRef] [Google Scholar]
- V.M. Shalaev, Optical negative-index metamaterials, Nat. Photonics 1, 41 (2007) [CrossRef] [Google Scholar]
- J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966 (2000) [CrossRef] [Google Scholar]
- J. Li, L. Zhou, C.T. Chan, P. Sheng, Photonic band gap from a stack of positive and negative index materials, Phys. Rev. Lett. 90, 083901 (2003) [CrossRef] [Google Scholar]
- T. Terao, Numerical study of two-dimensional metamaterial composites: the existence of a stop band, J. Mod. Opt. 60, 1997 (2013) [CrossRef] [Google Scholar]
- T. Terao, Finite-difference frequency-domain method to study photonic crystals with dispersive metamaterials, Jpn. J. Appl. Phys. 50, 102204 (2011) [CrossRef] [Google Scholar]
- A. Soltani Vala, S. Roshan Entezar, A.A. Sedghi, Band structure of two-dimensional square lattice photonic crystals of circular dispersive metamaterial rods, Eur. Phys. J. B 81, 269 (2011) [CrossRef] [Google Scholar]
- K. Edagawa, S. Kanoko, M. Notomi, Photonic amorphous diamond Structure with a 3D photonic band gap, Phys. Rev. Lett. 100, 013901 (2008) [CrossRef] [Google Scholar]
- M. Florescu, S. Torquato, P.J. Steinhardt, Designer disordered materials with large, complete photonic band gaps, Proc. Natl. Acad. Sci. U.S.A. 106, 20658 (2009) [CrossRef] [Google Scholar]
- W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, P. Chaikin, Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast, Opt. Express 21, 19972 (2013) [CrossRef] [Google Scholar]
- R. Meisels, F. Kuchar, Density-of-states and wave propagation in two-dimensional photonic crystals with positional disorder, J. Opt. A. 9, S396 (2007) [CrossRef] [Google Scholar]
- S. Guo, F. Wu, S. Albin, R. Rogowski, Photonic band gap analysis using finite-difference frequency-domain method, Opt. Express 12, 1741 (2004) [CrossRef] [Google Scholar]
- A.M. Ivinskaya, A.V. Lavrinenko, D.M. Shyroki, Modeling of nanophotonic resonators with the finite-difference frequency-domain method, IEEE Trans. Antennas Propag. 59, 4155 (2011) [CrossRef] [Google Scholar]
- D.M. Shyroki, A.V. Lavrinenko, Perfectly matched layer method in the finite-difference time-domain and frequency-domain calculations, Phys. Stat. Sol. 244, 3506 (2007) [CrossRef] [Google Scholar]
- T. Terao, Computing interior eigenvalues of nonsymmetric matrices: application to three-dimensional metamaterial composites, Phys. Rev. E 82, 026702 (2010) [CrossRef] [Google Scholar]
- A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Boston, 2005) [Google Scholar]
- T. Terao, Numerical analysis of metamaterial photonic crystals with positional disorder, in Proceedings of 15th international congress on artificial materials for novel wave phenomena (Metamaterials 2021), in press [Google Scholar]
- T. Terao, Manipulating sonic band gaps at will: vibrational density of states in three-dimensional acoustic metamaterial composites, Waves Random Complex Media 28, 253 (2018) [CrossRef] [Google Scholar]
- G.H. Golub, C.F. van Loan, Matrix Computations, 4th ed. (John Hopkins, Baltimore, 2013) [Google Scholar]
- Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. (SIAM, Philadelphia, 2003) [Google Scholar]
- F. Chatelin, Eigenvalues of Matrices (SIAM, Philadelphia, 2012) [CrossRef] [Google Scholar]
- R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM, Philadelphia, 1998) [CrossRef] [Google Scholar]
- U. Elsner, V. Mehrmann, F. Milde, R.A. Römer, M. Schreiber, SIAM J. Sci. Comput. 20, 2089 (1999) [CrossRef] [Google Scholar]
- T. Terao, Eigenvalue analysis of the three-dimensional tight-binding model with non-Hermitian disorder, Phys. Rev. B 103, 224201 (2021) [CrossRef] [Google Scholar]
- H. Daninthe, S. Foteinopoulou, C.M. Soukoulis, Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials, Photonics Nanostruct. Fundam. Appl. 4, 123 (2006) [CrossRef] [Google Scholar]
- A.A. Asatryan, L.C. Botten, M.A. Byrne, V.D. Freilikher, S.A. Gredeskul, I.V. Shadrivov, R.C. McPhedran, Y.S. Kivshar, Suppression of anderson localization in disordered metamaterial, Phys. Rev. Lett. 99, 193902 (2007) [CrossRef] [Google Scholar]
- J.A. Monsoriu, R.A. Depine, E.J. Silvestre, Non-Bragg band gaps in 1D metamaterial aperiodic multilayers, Eur. Opt. Soc. Rapid Publ. 2, 07002 (2007) [CrossRef] [Google Scholar]
- E. Reyes-Gómez, N. Raigoza, S.B. Cavalcanti, C.A.A. de Carvalho, L.E. Oliveira, Absorption effects on plasmon polaritons in quasiperiodic photonic superlattices containing a metamaterial, J. Phys.: Condens. Matter 22, 385901 (2010) [CrossRef] [Google Scholar]
- J.A. Monsoriu, R.A. Depine, M.L. Martínez-Ricci, E. Silvestre, P. Andrés, m-bonacci metamaterial multilayers: location of the zero-average index bandgap edges, Opt. Lett. 34, 3172 (2009) [CrossRef] [Google Scholar]
- A.A. Asatryan, L.C. Botten, M.A. Bayne, V.D. Freilikher, S.A. Gredeskul, I.V. Shadrivov, R.C. McPhedran, Y.S. Kivshar, Transmission and Anderson localization in dispersive metamaterials, Phys. Rev. B 85, 045122 (2012) [CrossRef] [Google Scholar]
- D. Mogilevtsev, F.A. Pinheiro, R.R. dos Santos, S.B. Cavalcanti, S.B.L.E. Oliveira, Suppression of Anderson localization of light and Brewster anomalies in disordered superlattices containing a dispersive metamaterial, Phys. Rev. B 82, 081105 (2010) [CrossRef] [Google Scholar]
- E. Marinari, G. Parisi, Simulated tempering: a new Monte Carlo scheme, Europhys. Lett. 19, 451 (1992) [CrossRef] [Google Scholar]
- A.P. Lyubartsev, A.A. Martinovski, S.V. Shevkunov, P.N. Vorontsov-Velyaminov, New approach to Monte Carlo calculation of the free energy: method of expanded ensembles, J. Chem. Phys. 96, 1776 (1992) [CrossRef] [Google Scholar]
- C.J. Geyer, Markov chain Monte Carlo maximum likelihood, in E.M. Keramidas (Ed.), Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface (American Statistical Association, New York 1991), p. 156 [Google Scholar]
- K. Hukushima, K. Nemoto, Exchange Monte Carlo method and application to spin glass simulations, J. Phys. Soc. Jpn. 65, 1604 (1996) [CrossRef] [Google Scholar]
- S. Trebst, M. Troyer, U.H.E. Hansmann, Optimized parallel tempering simulations of proteins, J. Chem. Phys. 124, 174903 (2006) [CrossRef] [Google Scholar]
- M. Born, E. Wolf, with contributions by A.B. Bhatia et al., Principles of optics: electromagnetic theory of propagation, interference and diffraction of light 7th ed. (Cambridge University Press, Cambridge, 1999) [CrossRef] [Google Scholar]
- W. Salejda, A. Klauzer-Kruszyna, K. Tarnowski, Photonic band structure of one-dimensional aperiodic superlattices composed of negative refraction metamaterials, Proc. SPIE 6581, 658112 (2007) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.