Open Access
EPJ Appl. Metamat.
Volume 8, 2021
Article Number 13
Number of page(s) 6
Published online 27 May 2021
  1. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312, 1780 (2006) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184 (2000) [CrossRef] [PubMed] [Google Scholar]
  3. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292, 77 (2001) [CrossRef] [PubMed] [Google Scholar]
  4. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index, Science 305, 788 (2004) [CrossRef] [PubMed] [Google Scholar]
  5. M.C.K. Wiltshire, J.B. Pendry, I.R. Young, D.J. Larkman, D.J. Gilderdale, J.V. Hajnal, Microstructured magnetic materials for RF flux guides in magnetic resonance imaging, Science 291, 849 (2001) [CrossRef] [PubMed] [Google Scholar]
  6. M.C.K. Wiltshire, J.V. Hajnal, J.B. Pendry, D.J. Edwards, C.J. Stevens, Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires, Opt. Express 11, 709 (2003) [CrossRef] [Google Scholar]
  7. D. Schurig, J.J. Mock, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314, 977 (2006) [CrossRef] [PubMed] [Google Scholar]
  8. R. Liu, T.J. Cui, D.R. Smith, Broadband ground-plane cloak, Science 323, 366 (2009) [CrossRef] [Google Scholar]
  9. Y.Q. Chen, Z.W. Guo, Y.Q. Wang, X. Chen, H.T. Jiang, H. Chen, Experimental demonstration of the magnetic field concentration effect in circuit-based magnetic near-zero index media, Opt. Express 28, 17064 (2020) [CrossRef] [Google Scholar]
  10. N. Engheta, R.W. Ziolkowsky, Metamaterials, Physics and Engineering Exploration (John Wiley and Sons, 2006) [Google Scholar]
  11. I. Liberal, N. Engheta, Near-zero refractive index photonics, Nat. Photon. 11, 149 (2017) [CrossRef] [Google Scholar]
  12. Z.W. Guo, H.T. Jiang, K.J. Zhu, Y. Sun, Y.H. Li, H. Chen, Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials, Phys. Rev. Appl. 10, 064048 (2018) [CrossRef] [Google Scholar]
  13. W.J. Ji, J. Luo, Y. Lai, Extremely anisotropic epsilon-near-zero media in waveguide metamaterials, Opt. Express 27, 19463 (2019) [CrossRef] [Google Scholar]
  14. Z.W. Guo, H.T. Jiang, H. Chen, Hyperbolic metamaterials: from dispersion manipulation to applications, J. Appl. Phys. 127, 071101 (2020) [CrossRef] [Google Scholar]
  15. Y. Wu, X.Y. Hu, F.F. Wang, J.H. Yang, C.C. Lu, Y.C. Liu, H. Yang, Q.H. Gong, Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range, Phys. Rev. Appl. 12, 054021 (2019) [CrossRef] [Google Scholar]
  16. Y.C. Fan, Z.Y. Wei, H.Q. Li, H. Chen, C.M. Soukoulis, Low-loss and high-Q planar metamaterial with toroidal moment, Phys. Rev. B 87, 115417 (2013) [CrossRef] [Google Scholar]
  17. R.S. Yang, J. Xu, N.H. Shen, F.L. Zhang, Q.H. Fu, J.J. Li, H.Q. Li, H.Q. Li, Subwavelength optical localization with toroidal excitations in plasmonic and Mie metamaterials, InfoMat. (2021), doi: 10.1002/inf2.12174 [Google Scholar]
  18. IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz, IEEE Standard C95 1–1991 (1992) [Google Scholar]
  19. ICNIRP, Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Phys. 74, 494 (1998) [Google Scholar]
  20. ICNIRP, Report, Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz), Health Phys. 99, 817 (2010) [Google Scholar]
  21. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw Theory Tech. 47, 2075 (1999) [CrossRef] [Google Scholar]
  22. H.H. Park, J.H. Kwon, S.I. Kwak, S. Ahn, Effect of air-gap between a ferrite plate and metal strips on magnetic shielding, IEEE Trans. Magn. 51, 1 (2015) [CrossRef] [PubMed] [Google Scholar]
  23. T. Batra, E. Schaltz, Passive shielding effect on space profile of magnetic field emissions for wireless power transfer to vehicles, J. Appl. Phys. 117, 17A739 (2015) [CrossRef] [Google Scholar]
  24. M. Budhia, G.A. Covic, J.T. Boys, Design and optimization of circular magnetic structures for lumped inductive power transfer systems, IEEE Trans. Power Electr. 26, 3096 (2011) [CrossRef] [Google Scholar]
  25. J. Kim, J. Kim, S. Kong, H. Kim, I.S. Suh, N.P. Suh, D.G. Cho, J. Kim, S. Ahn, Coil design and shielding methods for a magnetic resonant wireless power transfer system, Proc. IEEE 101, 1332 (2013) [CrossRef] [Google Scholar]
  26. S.M. Zhong, S.L. He, Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials, Sci. Rep. 3, 02083 (2013) [CrossRef] [Google Scholar]
  27. G. Lipworth, J. Ensworth, K. Seetharam, J.S. Lee, P. Schmalenberg, T. Nomura, M.S. Reynolds, D.R. Smith, Y. Urzhumov, Quasi-static magnetic field shielding using longitudinal mu-near-zero metamaterials, Sci. Rep. 5, 12764 (2015) [CrossRef] [Google Scholar]
  28. J.F. Zhu, W. Jiang, Y.C. Liu, G. Yin, J. Yuan, S.L. He, Y.G. Ma, Three-dimensional magnetic cloak working from d.c. to 250 kHz, Nat Commun. 6, 8931 (2015) [CrossRef] [Google Scholar]
  29. W. Jiang, Y.G. Ma, J.F. Zhu, G. Yin, Y.C. Liu, J. Yuan, S.L. He, Room-temperature broadband quasistatic magnetic cloak, NPG Asia Mater. 9, e341 (2017) [CrossRef] [Google Scholar]
  30. W. Jiang, Y.G. Ma, S.L. He, Static magnetic cloak without a superconductor, Phys. Rev. Appl. 9, 054041 (2018) [CrossRef] [Google Scholar]
  31. D. Van Wageningen, T. Staring, The Qi wireless power standard, Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 15, 25 (2010) [Google Scholar]
  32. W.-C. Chen, C.M. Bingham, K.M. Mak, N.W. Caira, W.J. Padilla, Extremely subwavelength planar magnetic metamaterials, Phys. Rev. B 85, 201104 (2012) [CrossRef] [Google Scholar]
  33. D.R. Smith, D.C. Vier, Th. Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E 71, 036617 (2005) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.