Issue
EPJ Appl. Metamat.
Volume 8, 2021
Frontiers in microwave, photonic, and mechanical metamaterials
Article Number 7
Number of page(s) 19
DOI https://doi.org/10.1051/epjam/2020013
Published online 08 February 2021
  1. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and µ, Sov. Phys. Uspekhi 10, 509 (1968) [Google Scholar]
  2. N. Engheta, R.W. Ziolkowski, Metamaterials: physics and engineering explorations (John Wiley & Sons & IEEE Press, Piscataway, New Jersey, 2006) [Google Scholar]
  3. G.V. Eleftheriades, K.G. Balmain, Negative-refraction metamaterials: fundamental principles and applications (John Wiley & Sons & IEEE Press, Hoboken, New Jersey, 2005) [Google Scholar]
  4. A.K. Sarychev, V.M. Shalaev, Electrodynamics of metamaterials (World Scientific, Singapore, 2007) [Google Scholar]
  5. T.J. Cui, D.R. Smith, R. Liu, Metamaterials: theory, design, and applications (Springer US, Boston, MA, 2010) [Google Scholar]
  6. F. Capolino, Applications of metamaterials (CRC Press, Boca Raton, FL, 2017) [Google Scholar]
  7. F. Bilotti, C. Vegni, Design of high-performing microstrip receiving gps antennas with multiple feeds, IEEE Antennas Wirel. Propag. Lett. 9, 248 (2010) [Google Scholar]
  8. A.O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, E. Ozbay, Enhanced transmission through a subwavelength aperture using metamaterials, Appl. Phys. Lett. 95, 052103 (2009) [Google Scholar]
  9. F. Bilotti, A. Toscano, L. Vegni, Very fast design formulas for microwave nonhomogeneous media filters, Microw. Opt. Technol. Lett. 22, 218 (1999) [Google Scholar]
  10. B.J. Hoenders, Existence of invisible nonscattering objects and nonradiating sources, J. Opt. Soc. Am. A 14, 262 (1997) [Google Scholar]
  11. A.D. Boardman, K. Marinov, N. Zheludev, V.A. Fedotov, Dispersion properties of nonradiating configurations: Finite-difference time-domain modeling, Phys. Rev. E 72, 036603 (2005) [Google Scholar]
  12. M. Kerker, Invisible bodies, J. Opt. Soc. Am. 65, 376 (1975) [Google Scholar]
  13. H. Chew, M. Kerker, Abnormally low electromagnetic scattering cross sections, J. Opt. Soc. Am. 66, 445 (1976) [Google Scholar]
  14. H. Kurss, Minimum-scattering antennas, IEEE Trans. Antennas Propag. 13, 671 (1965) [Google Scholar]
  15. N.G. Alexopoulos, N.K. Uzunoglu, Electromagnetic scattering from active objects: invisible scatterers, Appl. Opt. 17, 235 (1978) [Google Scholar]
  16. P.S. Kildal, A.A. Kishk, A. Tengs, Reduction of forward scattering from cylindrical objects using hard surfaces, IEEE Trans. Antennas Propag. 44, 1509 (1996) [Google Scholar]
  17. F. Monticone, A. Alù, Invisibility exposed: physical bounds on passive cloaking, Optica 3, 718 (2016) [Google Scholar]
  18. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312, 1780 (2006) [Google Scholar]
  19. U. Leonhardt, Optical conformal mapping, Science 312, 1777 (2006) [Google Scholar]
  20. V.M. Shalaev, Physics: transforming light, Science 322, 384 (2008) [Google Scholar]
  21. U. Leonhardt, To invisibility and beyond, Nature 471, 292 (2011) [Google Scholar]
  22. B. Zhang, Electrodynamics of transformation-based invisibility cloaking, Light Sci. Appl. 1, e32 (2012) [Google Scholar]
  23. E.J. Post, General covariance in electromagnetism (Springer, Berlin, Heidelberg, 1967), pp. 102 [Google Scholar]
  24. A.J. Ward, J.B. Pendry, Refraction and geometry in Maxwell's equations, J. Mod. Opt. 43, 773 (1996) [Google Scholar]
  25. F.L. Teixeira, W.C. Chew, Differential forms, metrics, and the reflectionless absorption of electromagnetic waves, J. Electromagn. Waves Appl. 13, 665 (1999) [Google Scholar]
  26. D. Schurig, J.B. Pendry, D.R. Smith, Transformation-designed optical elements, Opt. Express 15, 14772 (2007) [Google Scholar]
  27. Z. Ruan, M. Yan, C.W. Neff, M. Qiu, Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations, Phys. Rev. Lett. 99, 113903 (2007) [Google Scholar]
  28. J.S. Toll, Causality and the dispersion relation: logical foundations, Phys. Rev. 104, 1760 (1956) [Google Scholar]
  29. U. Leonhardt, T. Tyc, Broadband invisibility by non-Euclidean cloaking, Science 323, 110 (2009) [Google Scholar]
  30. J. Perczel, T. Tyc, U. Leonhardt, Invisibility cloaking without superluminal propagation, New J. Phys. 13, 083007 (2011) [Google Scholar]
  31. P. Alitalo, H. Kettunen, S. Tretyakov, Cloaking a metal object from an electromagnetic pulse: a comparison between various cloaking techniques, J. Appl. Phys. 107, 034905 (2010) [Google Scholar]
  32. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314, 977 (2006) [Google Scholar]
  33. J. Li, J.B. Pendry, Hiding under the carpet: a new strategy for cloaking, Phys. Rev. Lett. 101, 203901 (2008) [Google Scholar]
  34. R. Liu, C. Ji, J.J. Mock, J.Y. Chin, T.J. Cui, D.R. Smith, Broadband ground-plane cloak, Science 323, 366 (2009) [Google Scholar]
  35. T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener, Three-dimensional invisibility cloak at optical wavelengths, Science 328, 337 (2010) [Google Scholar]
  36. P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, S.A. Tretyakov, Transmission-line networks cloaking objects from electromagnetic fields, IEEE Trans. Antennas Propag. 56, 416 (2008) [Google Scholar]
  37. P. Alitalo, C.A. Valagiannopoulos, S.A. Tretyakov, Simple cloak for antenna blockage reduction, in IEEE Antennas and Propagation Society, AP-S International Symposium (Digest) (2011), pp. 669–672 [Google Scholar]
  38. P. Alitalo, S. Ranvier, J. Vehmas, S. Tretyakov, A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects, Metamaterials 2, 206 (2008) [Google Scholar]
  39. P. Alitalo, S. Tretyakov, Electromagnetic cloaking with metamaterials, Mater. Today 12, 22 (2009) [Google Scholar]
  40. P. Alitalo, F. Bongard, J.F. Zürcher, J. Mosig, S. Tretyakov, Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks, Appl. Phys. Lett. 94, 014103 (2009) [Google Scholar]
  41. S. Tretyakov, P. Alitalo, O. Luukkonen, C. Simovski, Broadband electromagnetic cloaking of long cylindrical objects, Phys. Rev. Lett. 103, 103905 (2009) [Google Scholar]
  42. J. Vehmas, P. Alitalo, S.A. Tretyakov, Experimental demonstration of antenna blockage reduction with a transmission-line cloak, IET Microw. Antennas Propag. 6, 830 (2012) [Google Scholar]
  43. J. Vehmas, P. Alitalo, S.A. Tretyakov, Transmission-line cloak as an antenna, IEEE Antennas Wirel. Propag. Lett. 10, 1594 (2011) [Google Scholar]
  44. A. Alù, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E 72, 016623 (2005) [Google Scholar]
  45. A. Alù, Mantle cloak: invisibility induced by a surface, Phys. Rev. B 80, 245115 (2009) [Google Scholar]
  46. A. Alù, N. Engheta, Cloaking a sensor, Phys. Rev. Lett. 102, 233901 (2009) [Google Scholar]
  47. A. Alù, N. Engheta, Cloaking a receiving antenna or a sensor with plasmonic metamaterials, Metamaterials 4, 153 (2010) [Google Scholar]
  48. R. Fleury, J. Soric, A. Alù, Physical bounds on absorption and scattering for cloaked sensors, Phys. Rev. B 89, 045122 (2014) [Google Scholar]
  49. C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles (Wiley, Weinheim, 1998) [Google Scholar]
  50. A. Alù, N. Engheta, Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking, New J. Phys. 10, 115036 (2008) [Google Scholar]
  51. J.C. Soric, A. Monti, A. Toscano, F. Bilotti, A. Alù, Multiband and wideband bilayer mantle cloaks, IEEE Trans. Antennas Propag. 63, 3235 (2015) [Google Scholar]
  52. C.A. Valagiannopoulos, P. Alitalo, S.A. Tretyakov, On the minimal scattering response of PEC cylinders in a dielectric cloak, IEEE Antennas Wirel. Propag. Lett. 13, 403 (2014) [Google Scholar]
  53. C.Y. Tay, Z.N. Chen, Azimuthally inhomogeneous metasurface cloak for cylindrical objects, IEEE Trans. Antennas Propag. 69, 254 (2021) [Google Scholar]
  54. A. Alù, N. Engheta, Effects of size and frequency dispersion in plasmonic cloaking, Phys. Rev. E 78, 045602(R) (2008) [Google Scholar]
  55. A. Monti, L. Tenuti, G. Oliveri, A. Alù, A. Massa, A. Toscano, F. Bilotti, Design of multi-layer mantle cloaks, in 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, METAMATERIALS 2014 (Institute of Electrical and Electronics Engineers Inc., 2014), pp. 214–216 [Google Scholar]
  56. L. Tenuti, G. Oliveri, A. Monti, F. Bilotti, A. Toscano, A. Massa, Design of mantle cloaks through a System-by-Design approach, in 2016 10th European Conference on Antennas and Propagation, EuCAP 2016 (Institute of Electrical and Electronics Engineers Inc., 2016) [Google Scholar]
  57. H. Younesiraad, M. Bemani, S. Nikmehr, Scattering suppression and cloak for electrically large objects using cylindrical metasurface based on monolayer and multilayer mantle cloak approach, IET Microw. Antennas Propag. 13, 278 (2019) [Google Scholar]
  58. A. Alù, N. Engheta, Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights, Opt. Express 15, 3318 (2007) [Google Scholar]
  59. A. Alù, N. Engheta, Multifrequency optical invisibility cloak with layered plasmonic shells, Phys. Rev. Lett. 100, 113901 (2008) [Google Scholar]
  60. S. Tricarico, F. Bilotti, A. Alù, L. Vegni, Plasmonic cloaking for irregular objects with anisotropic scattering properties, Phys. Rev. E 81, 026602 (2010) [Google Scholar]
  61. A. Alù, D. Rainwater, A. Kerkhoff, Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling, New J. Phys. 12, 103028 (2010) [Google Scholar]
  62. M.G. Silveirinha, A. Alù, N. Engheta, Parallel-plate metamaterials for cloaking structures, Phys. Rev. E 75, 036603 (2007) [Google Scholar]
  63. B. Edwards, A. Alù, M.G. Silveirinha, N. Engheta, Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials, Phys. Rev. Lett. 103, 153901 (2009) [Google Scholar]
  64. D. Rainwater, A. Kerkhoff, K. Melin, J.C. Soric, G. Moreno, A. Alù, Experimental verification of three-dimensional plasmonic cloaking in free-space, New J. Phys. 14, 13054 (2012) [Google Scholar]
  65. F. Bilotti, S. Tricarico, L. Vegni, Plasmonic metamaterial cloaking at optical frequencies, IEEE Trans. Nanotechnol. 9, 55 (2010) [Google Scholar]
  66. A. Monti, F. Bilotti, A. Toscano, Optical cloaking of cylindrical objects by using covers made of core–shell nanoparticles, Opt. Lett. 36, 4479 (2011) [Google Scholar]
  67. M. Fruhnert, A. Monti, I. Fernandez-Corbaton, A. Alù, A. Toscano, F. Bilotti, C. Rockstuhl, Tunable scattering cancellation cloak with plasmonic ellipsoids in the visible, Phys. Rev. B 93, 245127 (2016) [Google Scholar]
  68. P.Y. Chen, A. Alù, Mantle cloaking using thin patterned metasurfaces, Phys. Rev. B 84, 205110 (2011) [Google Scholar]
  69. Y.R. Padooru, A.B. Yakovlev, P.Y. Chen, A. Alù, Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays, J. Appl. Phys. 112, 034907 (2012) [Google Scholar]
  70. J.C. Soric, P.Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, A. Alù, Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space, New J. Phys. 15, 033037 (2013) [Google Scholar]
  71. Z.H. Jiang, D.H. Werner, Exploiting metasurface anisotropy for achieving near-perfect low-profile cloaks beyond the quasi-static limit, J. Phys. D Appl. Phys. 46, 505306 (2013) [Google Scholar]
  72. A. Monti, J.C. Soric, A. Alù, A. Toscano, F. Bilotti, Anisotropic mantle cloaks for TM and TE scattering reduction, IEEE Trans. Antennas Propag. 63, 1775 (2015) [Google Scholar]
  73. R.S. Schofield, J.C. Soric, D. Rainwater, A. Kerkhoff, A. Alù, Scattering suppression and wideband tunability of a flexible mantle cloak for finite-length conducting rods, New J. Phys. 16, 63063 (2014) [Google Scholar]
  74. S. Vellucci, A. Monti, A. Toscano, F. Bilotti, Scattering manipulation and camouflage of electrically small objects through metasurfaces, Phys. Rev. Appl. 7, 034032 (2017) [Google Scholar]
  75. S. Tretyakov, Analytical modeling in applied electromagnetics (Artech House, Norwood, MA, USA, 2003) [Google Scholar]
  76. S.A. Tretyakov, Metasurfaces for general transformations of electromagnetic fields, Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 373, 20140362 (2015) [Google Scholar]
  77. G. Labate, A. Alù, L. Matekovits, Surface-admittance equivalence principle for nonradiating and cloaking problems, Phys. Rev. A 95, 063841 (2017) [Google Scholar]
  78. G. Labate, S. Podilchak, L. Matekovits, Analytical synthesis of dispersive mantle cloaks for metallic cylinders: a zero contrast methodology, arXiv:1704.03323 (2017) [Google Scholar]
  79. C. Balanis, Advancead engineering electromagnetics (1989), pp. 329–343 [Google Scholar]
  80. S. Vellucci, A. Monti, G. Oliveri, A. Massa, A. Toscano, F. Bilotti, Scattering camouflage and manipulation using metasurfaces, in 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Metamaterials 2016 (2016) [Google Scholar]
  81. A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, F. Bilotti, Mantle cloaking for co-site radio-frequency antennas, Appl. Phys. Lett. 108, 113502 (2016) [Google Scholar]
  82. O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A.V. Räisänen, S.A. Tretyakov, Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches, IEEE Trans. Antennas Propag. 56, 1624 (2008) [Google Scholar]
  83. H. Hashemi, B. Zhang, J.D. Joannopoulos, S.G. Johnson, Delay-bandwidth and delay-loss limitations for cloaking of large objects, Phys. Rev. Lett. 104, 253903 (2010) [Google Scholar]
  84. J.C. Soric, R. Fleury, A. Monti, A. Toscano, F. Bilotti, A. Alù, Controlling scattering and absorption with metamaterial covers, IEEE Trans. Antennas Propag. 62, 4220 (2014) [Google Scholar]
  85. D.H. Kwon, D.H. Werner, Restoration of antenna parameters in scattering environments using electromagnetic cloaking, Appl. Phys. Lett. 92, 113507 (2008) [Google Scholar]
  86. P.S. Kildal, Artificially soft and hard surfaces in electromagnetics, IEEE Trans. Antennas Propag. 38, 1537 (1990) [Google Scholar]
  87. P.S. Kildal, E. Rajo-Iglesias, Mushroom surface cloaks for making struts invisible, in IEEE Antennas and Propagation Society, AP-S International Symposium (Digest) (2007), pp. 869–872 [Google Scholar]
  88. M. Riel, Y. Brand, Y. Demers, P. De Maagt, Performance improvements of center-fed reflector antennas using low scattering struts, IEEE Trans. Antennas Propag. 60, 1269 (2012) [Google Scholar]
  89. S. Vellucci, A. Monti, M. Barbuto, A. Toscano, F. Bilotti, Satellite applications of electromagnetic cloaking, IEEE Trans. Antennas Propag. 65, 4931 (2017) [Google Scholar]
  90. W.A. Shiroma, L.K. Martin, J.M. Akagi, J.T. Akagi, B.L. Wolfe, B.A. Fewell, A.T. Ohta, CubeSats: a bright future for nanosatellites, Cent. Eur. J. Eng. 1, 9 (2011) [Google Scholar]
  91. D. Selva, D. Krejci, A survey and assessment of the capabilities of Cubesats for Earth observation, Acta Astronaut. 74, 50 (2012) [Google Scholar]
  92. S. Vellucci, A. Monti, M. Barbuto, A. Toscano, F. Bilotti, Use of mantle cloaks to increase reliability of satellite-to-ground communication link, IEEE J. Multiscale Multiphysics Comput. Tech. 2, 168 (2017) [Google Scholar]
  93. S. Vellucci, A. Monti, M. Barbuto, A. Toscano, F. Bilotti, Enhancing the performances of satellite telecommunication systems exploiting electromagnetic cloaking, in 2017 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena, Metamaterials 2017 (2017) [Google Scholar]
  94. C. Balanis, Antenna theory: analysis and design, 4th ed. (Wiley, Hoboken, New Jersey, 2016) [Google Scholar]
  95. S. Tretyakov, Maximizing absorption and scattering by dipole particles, arXiv:1312.0899 (2013) [Google Scholar]
  96. A. Alù, S. Maslovski, Power relations and a consistent analytical model for receiving wire antennas, IEEE Trans. Antennas Propag. 58, 1436 (2010) [Google Scholar]
  97. A. Monti, J. Soric, A. Alu, F. Bilotti, A. Toscano, L. Vegni, Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface, IEEE Antennas Wirel. Propag. Lett. 11, 1414 (2012) [Google Scholar]
  98. Z.H. Jiang, P.E. Sieber, L. Kang, D.H. Werner, Restoring intrinsic properties of electromagnetic radiators using ultralightweight integrated metasurface cloaks, Adv. Funct. Mater. 25, 4708 (2015) [Google Scholar]
  99. Z.H. Jiang, D.H. Werner, Dispersion engineering of metasurfaces for dual-frequency quasi-three-dimensional cloaking of microwave radiators, Opt. Express 24, 9629 (2016) [Google Scholar]
  100. J.C. Soric, A. Monti, A. Toscano, F. Bilotti, A. Alu, Dual-polarized reduction of dipole antenna blockage using mantle cloaks, IEEE Trans. Antennas Propag. 63, 4827 (2015) [Google Scholar]
  101. H.M. Bernety, A.B. Yakovlev, Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks, IEEE Trans. Antennas Propag. 63, 1554 (2015) [Google Scholar]
  102. H.M. Bernety, A.B. Yakovlev, Decoupling antennas in printed technology using elliptical metasurface cloaks, J. Appl. Phys. 119, 014904 (2016) [Google Scholar]
  103. G. Moreno, A.B. Yakovlev, H.M. Bernety, D.H. Werner, H. Xin, A. Monti, F. Bilotti, A. Alu, Wideband elliptical metasurface cloaks in printed antenna technology, IEEE Trans. Antennas Propag. 66, 3512 (2018) [Google Scholar]
  104. Z.H. Jiang, M.D. Gregory, D.H. Werner, A broadband monopole antenna enabled by an ultrathin anisotropic metamaterial coating, IEEE Antennas Wirel. Propag. Lett. 10, 1543 (2011) [Google Scholar]
  105. A. Monti, J. Soric, A. Alù, A. Toscano, F. Bilotti, Design of cloaked Yagi-Uda antennas, EPJ Appl. Metamat. 3, 10 (2016) [Google Scholar]
  106. H. Mehrpour Bernety, A.B. Yakovlev, H.G. Skinner, S.Y. Suh, A. Alu, Decoupling and cloaking of interleaved phased antenna arrays using elliptical metasurfaces, IEEE Trans. Antennas Propag. 68, 4997 (2020) [Google Scholar]
  107. P.Y. Chen, C. Argyropoulos, A. Alù, Broadening the cloaking bandwidth with non-foster metasurfaces, Phys. Rev. Lett. 111, 233001 (2013) [Google Scholar]
  108. A. Kord, D.L. Sounas, A. Alù, Active microwave cloaking using parity-time-symmetric satellites, Phys. Rev. Appl. 10, 054040 (2018) [Google Scholar]
  109. D.L. Sounas, R. Fleury, A. Alù, Unidirectional cloaking based on metasurfaces with balanced loss and gain, Phys. Rev. Appl. 4, 014005 (2015) [Google Scholar]
  110. M. Selvanayagam, G.V. Eleftheriades, Experimental demonstration of active electromagnetic cloaking, Phys. Rev. X 3, 041011 (2014) [Google Scholar]
  111. Z. Luo, X. Chen, J. Long, R. Quarfoth, D. Sievenpiper, Nonlinear power-dependent impedance surface, IEEE Trans. Antennas Propag. 63, 1736 (2015) [Google Scholar]
  112. A. Monti, M. Barbuto, A. Toscano, F. Bilotti, Nonlinear mantle cloaking devices for power-dependent antenna arrays, IEEE Antennas Wirel. Propag. Lett. 16, 1727 (2017) [Google Scholar]
  113. A. Monti, M. Barbuto, A. Toscano, F. Bilotti, Power-dependent invisibility devices for antenna arrays, in 2019 URSI International Symposium on Electromagnetic Theory, EMTS 2019 (Institute of Electrical and Electronics Engineers Inc., 2019) [Google Scholar]
  114. S. Vellucci, A. Monti, M. Barbuto, M. Salucci, G. Oliveri, A. Toscano, F. Bilotti, Non-linear mantle cloaks for self-configurable power-dependent phased arrays, in 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science (IEEE, 2020), pp. 1–3 [Google Scholar]
  115. S. Vellucci, A. Monti, M. Barbuto, M. Salucci, G. Oliveri, A. Toscano, F. Bilotti, Overcoming Mantle Cloaking Limits in Antenna Applications through Non-Linear Metasurfaces, in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (IEEE, New York, 2020) [Google Scholar]
  116. S. Vellucci, A. Toscano, F. Bilotti, A. Monti, M. Barbuto, Towards waveform-selective cloaking devices exploiting circuit-loaded metasurfaces, in 2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018–Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018), pp. 1861–1862 [Google Scholar]
  117. S. Vellucci, A. Monti, M. Barbuto, A. Toscano, F. Bilotti, Waveform-selective mantle cloaks for intelligent antennas, IEEE Trans. Antennas Propag. 68, 1717 (2019) [Google Scholar]
  118. H. Wakatsuchi, D. Anzai, J.J. Rushton, F. Gao, S. Kim, D.F. Sievenpiper, Waveform selectivity at the same frequency, Sci. Rep. 5, 9639 (2015) [Google Scholar]
  119. H. Wakatsuchi, J. Long, D.F. Sievenpiper, Waveform selective surfaces, Adv. Funct. Mater. 29, 7196 (2019) [Google Scholar]
  120. M. Barbuto, D. Lione, A. Monti, S. Vellucci, F. Bilotti, A. Toscano, Waveguide components and aperture antennas with frequency- and time-domain selectivity properties, IEEE Trans. Antennas Propag. 68, 7196 (2020) [Google Scholar]
  121. S. Vellucci, M. Barbuto, A. Monti, A. Toscano, F. Bilotti, Waveform-selective devices for antenna applications, in 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science (IEEE, 2020), pp. 1–4 [Google Scholar]
  122. G. Guarnieri, G. Mauriello, S. Scafe, M. Barbuto, A. Monti, D. Ramaccia, S. Vellucci, A. Tobia, A. Toscano, F. Bilotti, Metamaterials meeting industrial products: a successful example in Italy, in 2016 IEEE Antennas and Propagation Society International Symposium, APSURSI 2016–Proceedings (2016) [Google Scholar]
  123. D. Ramaccia, D.L. Sounas, A. Alù, A. Toscano, F. Bilotti, Doppler cloak restores invisibility to objects in relativistic motion, Phys. Rev. B 95, 075113 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.