EPJ Appl. Metamat.
Volume 6, 2019
Metamaterials'2018 – Microwave, mechanical, and acoustic metamaterials
Article Number 18
Number of page(s) 12
Published online 20 September 2019
  1. S. Brûlé, E.H. Javelaud, S. Enoch, S. Guenneau, Experiments on seismic metamaterials: molding surface waves, Phys. Rev. Lett. 112, 133901 (2014) [CrossRef] [Google Scholar]
  2. A. Colombi, D. Colquitt, P. Roux, S. Guenneau, R. Craster, A seismic metamaterial: the resonant metawedge, Sci. Rep. 6, 27717 (2016) [CrossRef] [Google Scholar]
  3. K.L. Tsakmakidis, A.D. Boardman, O. Hess, Trapped rainbow storage of light in metamaterials, Nature 450 , 397 (2007) [CrossRef] [PubMed] [Google Scholar]
  4. P. Guéguen, P.Y. Bard, F.J. Chavez-Garcia, Site-city seismic interaction in Mexico city -like environments: an analytical study, Bull. Seismol. Soc. Am. 92, 794–811 (2002) [CrossRef] [Google Scholar]
  5. S. Brûlé, B. Ungureanu, Y. Achaoui, A. Diatta, R. Aznavourian, T. Antonakakis, R.V. Craster, S. Enoch, S. Guenneau, Metamaterial-like transformed urbanism, Innov. Infrastruct. Solut. 2, 20 (2017) [CrossRef] [Google Scholar]
  6. M. Kadic, T. Bückmann, R. Schittny, M. Wegener, Metamaterials beyond electromagnetism, Rep. Prog Phys. 76, 126501 (2013) [CrossRef] [Google Scholar]
  7. P. Roux, M. Rupin, F. Lemoult, G. Lerosey, A Colombi, R. V. Craster, New Trends Toward Locally-Resonant Metamaterials at the Mesoscopic Scale, in: R.V. Craster, S. Guenneau, W.A. Kuperman, E.G. Williams (Eds.), World Scientific Handbook of Metamaterials and Plasmonics, 16, Elastic, Acoustic and Seismic Metamaterials, Vol. 2, 2017, pp. 251–299 [CrossRef] [Google Scholar]
  8. P. Roux, D. Bindi, T. Boxberger, A. Colombi, F. Cotton, I. Douste‐Bacque, S. Garambois, P. Guéguen, G. Hillers, D. Hollis, T. Lecocq, I. Pondaven, Toward seismic metamaterials: the METAFORET project, Seismol. Res. Lett. 89, 582–593 (2018) [CrossRef] [Google Scholar]
  9. A. Colombi, P. Roux, S. Guenneau, P. Guéguen, R. Craster, Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances, Sci. Rep. 6, 19238 (2016) [CrossRef] [Google Scholar]
  10. P. Guéguen, A. Colombi, Experimental and numerical evidence of the clustering effect of structures on their response during an earthquake: a case study of three identical towers in the city of Grenoble, France, Bull. Seismol. Soc. Am. 106, 2855–2864 (2016) [CrossRef] [Google Scholar]
  11. S. Brûlé, E.H. Javelaud, S. Enoch, S. Guenneau, Flat lens effect on seismic waves propagation in the subsoil, Sci. Rep. 7, 18066 (2017) [CrossRef] [Google Scholar]
  12. Y. Achaoui, B. Ungureanu, S. Enoch, S. Brûlé, S. Guenneau, Seismic waves damping with arrays of inertial resonators, Extreme Mech. Lett. 8, 30–37 (2016) [CrossRef] [Google Scholar]
  13. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312, 1780 (2006) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. U. Leonhardt, Optical conformal mapping, Science 312, 1777 (2006) [Google Scholar]
  15. G.W. Milton, M. Briane, J.R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys. 8, 248 (2006) [CrossRef] [Google Scholar]
  16. M. Brun, S. Guenneau, A.B. Movchan, Achieving control of in-plane elastic waves, Appl. Phys. Lett., 94, 061903 (2009) [CrossRef] [Google Scholar]
  17. A. Norris, A.L. Shuvalov, Elastic cloaking theory, Wave Motion, 48, 525 (2011) [Google Scholar]
  18. A. Diatta, S. Guenneau, Controlling solid elastic waves with spherical cloaks, Appl. Phys. Lett. 05, 021901 (2014) [CrossRef] [Google Scholar]
  19. M. Farhat, S. Guenneau, S. Enoch, Ultrabroadband elastic cloaking in thin plates, Phys. Rev. Lett. 103, 024301 (2009) [CrossRef] [Google Scholar]
  20. N. Stenger, M. Wilhelm, M. Wegener, Experiments on elastic cloaking in thin plates, Phys. Rev. Lett. 108, 014301 (2012) [CrossRef] [Google Scholar]
  21. A. Darabi, A. Zareei, M.R. Alam, M.J. Leamy, Experimental demonstration of an ultrabroadband nonlinear cloak for flexural waves, Phys. Rev. Lett. 121, 174301 (2018) [CrossRef] [Google Scholar]
  22. D. Misseroni, D.J. Colquitt, A.B. Movchan, N.V. Movchan, I.S. Jones, Cymatics for the cloaking of flexural vibrations in a structured plate, Sci. Rep. 6, 23929 (2016) [CrossRef] [Google Scholar]
  23. M. Farhat, S. Enoch, S. Guenneau, A.B. Movchan, Broadband cylindrical acoustic cloak for linear surface waves in a fluid, Phys. Rev. Lett. 101, 134501 (2008) [CrossRef] [PubMed] [Google Scholar]
  24. J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J.-M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, S. Guenneau, Molding acoustic, electromagnetic and water waves with a single cloak, Sci. Rep. 5, 10678 (2015) [CrossRef] [Google Scholar]
  25. T. Bückman, M. Kadic, R. Schittny, M. Wegener, Mechanical cloak design by lattice transformation, Proc. Nat. Acad. Sci. 112, 4930–4934 (2015) [CrossRef] [Google Scholar]
  26. A. Colombi, P. Roux, S. Guenneau, M. Rupin, Directional cloaking of flexural waves in a plate with a locally resonant metamaterial, J. Acoust. Soc. Am. 137, 1783–1789 (2015) [CrossRef] [Google Scholar]
  27. A. Diatta, Y. Achaoui, S. Brûlé, S. Enoch, S. Guenneau, Control of Rayleigh-like waves in thick plate Willis metamaterials, AIP Adv. 6, 121707 (2016) [CrossRef] [Google Scholar]
  28. A. Darabi, A. Zareei, M.-R. Alam, M.J. Leamy, Experimental demonstration of an ultrabroadband nonlinear cloak for flexural waves, Phys. Rev. Lett. 121, 174301 (2018) [CrossRef] [Google Scholar]
  29. S. Brûlé, S. Enoch, S. Guenneau, R.V. Craster, Seismic metamaterials: controlling surface Rayleigh waves using analogies with electromagnetic metamaterials, Handbook of metamaterials (World Scientific, Singapore, 2018), Vol. 2, Chap. 7 [Google Scholar]
  30. A. Climente, D. Torrent, J. Sánchez-Dehesa, Analysis of flexural wave cloaks, AIP Adv. 6, 121704, (2016) [CrossRef] [Google Scholar]
  31. T. Abbas, H. Ammari, G. Hu, A. Wahab, J.C. Ye, Two-dimensional elastic scattering coefficients and enhancement of nearly elastic cloaking, J. Elast. 128, 203–243 (2017) [CrossRef] [Google Scholar]
  32. L. Pomot, S. Bourgeois, C. Payan, M. Remillieux, S. Guenneau, On form invariance of the Kirchhoff-Love plate equation, arXiv:1901.00067 (2019) [Google Scholar]
  33. R.V. Craster, A. Diatta, S. Guenneau, H. Hutridurga, Some results on near-cloaking for linear elasticity, arXiv:1803.01360 (2018) [Google Scholar]
  34. L. Rayleigh, On waves propagated along the plane surface of an elastic solid, Proc. Lond. Math. Soc. 17, 4–11 (1885) [CrossRef] [Google Scholar]
  35. R. Kohn, H. Shen, M. Vogelius, M. Weinstein, Cloaking via change of variables in electric impedance tomography, Inverse Probl. 24, 015016 (2008) [CrossRef] [Google Scholar]
  36. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Cloaking Devices, Electromagnetic Wormholes, and transformation optics, SIAM Rev. 51, 3 (2009) [CrossRef] [Google Scholar]
  37. A. Colombi, S. Guenneau, P. Roux, R.V. Craster, Transformation seismology: composite soil lenses for steering surface elastic Rayleigh waves, Sci. Rep. 6, 25320 (2016) [CrossRef] [Google Scholar]
  38. C. Chesnais, C. Boutin, S. Hans, Wave propagation and non-local effects in periodic frame materials: Generalized continuum mechanics, Math. Mech. Sol. 20, 929–958 (2015) [CrossRef] [Google Scholar]
  39. R.V. Craster, J. Kaplunov, J. Postnova, High-frequency asymptotics, homogenisation and localisation for lattices, Quart. J. Mech. Appl. Math. 63, 497–519 (2010) [CrossRef] [Google Scholar]
  40. A. Kham, J.F. Semblat, P.Y. Bard, P. Dangla, Seismic site-city interaction: main governing phenomena through simplified numerical models, Bull. Seismol. Soc. Am. 96, 1934–1951 (2006) [CrossRef] [Google Scholar]
  41. J.F. Semblat, A. Pecker, Waves and vibrations in soils: earthquakes, traffic, shocks, construction works (IUSS Press, Austria, 2009) [Google Scholar]
  42. S. Brûlé, F. Cuira, Pratique de l'interaction sol-structure sous seisme − Applications aux fondations et aux soutenements, AFNOR ISBN: 978-2-12-465600-4, 2018 [Google Scholar]
  43. R. Fleury, F. Monticone, A. Alu, Invisibility and cloaking, origins, present, and future perspectives, Phys. Rev. Appl. 4, 037001 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.