Issue
EPJ Appl. Metamat.
Volume 6, 2019
Metamaterials Research and Development in Japan
Article Number 17
Number of page(s) 7
DOI https://doi.org/10.1051/epjam/2019014
Published online 30 July 2019
  1. Special Issues on electromagnetic application of photonic bandgap structure, progress in electromagnetics, PIER 41 (2003) [Google Scholar]
  2. Special Issue on metamaterial structures phenomena and applications, IEEE Trans. Microw. Theory Technol. 52 , 2 (2004) [CrossRef] [Google Scholar]
  3. F. Capolino, ed., Metamaterials handbook, Part I: Theory and phenomena of metamaterials, Pert II: Applications of metamaterials (CRC Press, Boca Raton, 2009) [Google Scholar]
  4. D. Sievenpiper, L. Zhang, R.F. Broas, N. Alexopolous, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microw. Theory Technol. 47 , 7–17 (1995) [Google Scholar]
  5. F. Yang, Y. Rahmat-Samii, Microstrip antenna integrated with electromagnetic band-gap (EBG) structure: A low mutual coupling design for array application, IEEE Trans. Antennas Propagat. 51, 2936–2946 (2003) [CrossRef] [Google Scholar]
  6. A. Taflove, S.C. Hagness, Computational electrodynamics the Finite-Difference Time-Domain method , 3rd edn. (Artech House, Boston, 2005) [Google Scholar]
  7. K.S. Kunz, R.J. Luebbers, The finite difference time domain method for electromagnetics (CRC Press, Boca Raton, 1993) [Google Scholar]
  8. H. Yang, R. Mittra, FDTD modeling of metamaterials: theory and applications (Artech House, Boston, 2008) [Google Scholar]
  9. T. Uno, T. Arima, Y. He, FDTD method for computational electromagnetics − Fundamentals and practical application (Corona Publ. Co, Tokyo, 2016), in Japanese [Google Scholar]
  10. P. Harms, R. Mittra, W. Ko, Implementation of the periodic boundary-condition in the Finite-Difference Time-Domain algorithm for FSS structures, IEEE Trans. Antennas Propagat. 42 , 1317–1324 (1994) [CrossRef] [Google Scholar]
  11. R. Sigelmann, A. Ishimaru, Radiation from periodic structures excited by an aperiodic source, IEEE Trans. Antennas Propagat. 13 , 354–364 (1965) [CrossRef] [Google Scholar]
  12. F. Capolino, D.R. Jackson, D.R. Wilton, Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source, IEEE Trans. Antennas Propagat. 53 , 91–99 (2005) [CrossRef] [Google Scholar]
  13. F. Capolino, D.R. Jackson, D.R. Wilson, L.B. Felsen, Comparison of methods for calculating the field excited by a dipole near a 2-D periodic material, IEEE Trans. Antennas Propagat. 55 , 1644–1655 (2007) [CrossRef] [Google Scholar]
  14. J.G. Maloney, G.S. Smith, The use of surface impedance concepts in the finite-difference time-domain method, IEEE Trans. Antennas Propagat. 40 , 38–48 (1992) [CrossRef] [Google Scholar]
  15. J.H. Beggs, R.J. Luebbers, K.S. Yee, K.S. Kunz, Finite-Difference Time-Domain implementation of surface impedance boundary-conditions, IEEE Trans. Antennas Propagat. 40 , 49–56 (1992) [CrossRef] [Google Scholar]
  16. T. Arima, T. Uno, Meta-surface modeling method in FDTD analysis by introducing surface impedance boundary conditions, in 2017 IEEE Int. Conf. Computational Electromag. (ICCEM) (2017), 261–262 [CrossRef] [Google Scholar]
  17. T.B.A. Senior, J.L. Volakis, Approximate boundary conditions in electromagnetics (IEE Press, London, 1995) [CrossRef] [Google Scholar]
  18. I.V. Lindell, Methods for electromagnetic field analysis , 2nd edn. (IEEE Press, New York, 1995) [Google Scholar]
  19. S. Tretyakov, Analytical modeling in applied electromagnetics (Artech House, Boston, 2000) [Google Scholar]
  20. S.A. Tretyakov, C.R. Simovski, Dynamic model of artificial reactive impedance surfaces, J. Electromagn. Waves Appl. 17, 131–145 (2003) [CrossRef] [Google Scholar]
  21. D.B. Kuznetsov, J.E. SchuttAine, Optimal transient simulation of transmission lines, IEEE Trans. Circ. Syst. I-Fundam. Theory Appl. 43 , 110–121 (1996) [CrossRef] [Google Scholar]
  22. R.J. Luebbers, F. Hunsberger, K.S. Kunz, R.B. Standler, M. Schneider, A frequency-dependent finite-difference time-domain formulation for dispersive materials, IEEE Trans. Electromagn. Compat. 32 , 222–227 (1990) [CrossRef] [Google Scholar]
  23. D.F. Kelly, R.J. Luebbers, Piecewise linear recursive convolution for dispersive medium using FDTD, IEEE Trans. Antennas Propagat. 44 , 792–797 (1996) [CrossRef] [Google Scholar]
  24. C.-T. Tai, Dyadic Green functions in electromagnetic theory , 2nd edn. (IEEE Press, New York, 1994) [Google Scholar]
  25. L.B. Felsen, N. Marcuvitz, Radiation and scattering of waves (Prentice-Hall Inc., Englewood Cliffs, NJ, 1973) [Google Scholar]
  26. T. Uno, Simplification of dyadic Green's function for plane stratified media and its application to lossless DNG slab, IEICE Trans. Commun. (Japanese edition) J89-B, 1661–1671 (2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.