EPJ Appl. Metamat.
Volume 6, 2019
Metamaterials Research and Development in China
Article Number 1
Number of page(s) 7
Published online 16 January 2019
  1. G.T. Ruck, D.E. Barrick, W.D. Stuart, C.K. Krichbaum, Radar cross section handbook (Plenum Press, New York, 1970) [CrossRef] [Google Scholar]
  2. Y. Ra’di, C.R. Simovski, S.A. Tretyakov, Thin perfect absorbers for electromagnetic waves: theory, design, and realizations, Phys. Rev. Appl. 3, 37001 (2015) [CrossRef] [Google Scholar]
  3. C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers, Adv. Mater. 24, OP98 (2012) [Google Scholar]
  4. N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging, Phys. Rev. B 79, 125104 (2009) [CrossRef] [Google Scholar]
  5. B. Zhu, Y. Feng, J. Zhao, C. Huang, T. Jiang, Switchable metamaterial reflector/absorber for different polarized electromagnetic waves, Appl. Phys. Lett. 97, 51906 (2010) [CrossRef] [Google Scholar]
  6. D. Shrekenhamer, W.C. Chen, W.J. Padilla, Liquid crystal tunable metamaterial absorber, Phys. Rev. Lett. 110, 177403 (2013) [CrossRef] [Google Scholar]
  7. K. Chen, N. Jia, B. Sima, B. Zhu, J. Zhao, Y. Feng, T. Jiang, Microwave absorber based on permeability-near-zero metamaterial made of Swiss roll structures, J. Phys. D 48, 455304 (2015) [CrossRef] [Google Scholar]
  8. M. Diem, T. Koschny, C.M. Soukoulis, Wide-angle perfect absorber/thermal emitter in the terahertz regime, Phys. Rev. B 79, 033101 (2009) [CrossRef] [Google Scholar]
  9. S. Liu, H. Chen, T.J. Cui, A broadband terahertz absorber using multi-layer stacked bars, Appl. Phys. Lett. 106, 151601 (2015) [CrossRef] [Google Scholar]
  10. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, S. He, Plasmonic and metamaterial structures as electromagnetic absorbers, Laser Photon. Rev. 8, 495 (2014) [CrossRef] [Google Scholar]
  11. H. Tao, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, A dual band terahertz metamaterial absorber, J. Phys. D 43, 225102 (2010) [CrossRef] [Google Scholar]
  12. H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, Z.-M. Xu, Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber, Phys. Rev. B 86, 205104 (2012) [CrossRef] [Google Scholar]
  13. W.W. Salisbury, Absorbent body for electromagnetic waves, U.S. Patent No. 2,599,944 (1952) [Google Scholar]
  14. Z. Zhou, K. Chen, B. Zhu, J. Zhao, Y. Feng, Y. Li, Ultra-wideband microwave absorption by design and optimization of metasurface Salisbury screen, IEEE Access 6, 26843 (2018) [CrossRef] [Google Scholar]
  15. Z. Zhou, K. Chen, J. Zhao, P. Chen, T. Jiang, B. Zhu, Y. Feng, Y. Li, Metasurface Salisbury screen: achieving ultra-wideband microwave absorption, Opt. Express 25, 30241 (2017) [CrossRef] [Google Scholar]
  16. Y. Cheng, Y. Nie, X. Wang, R. Gong, Adjustable low frequency and broadband metamaterial absorber based on magnetic rubber plate and cross resonator, J. Appl. Phys. 115, 64902 (2014) [CrossRef] [Google Scholar]
  17. W. Li, T. Wu, W. Wang, J. Guan, P. Zhai, Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers, Appl. Phys. Lett. 104, 22903 (2014) [CrossRef] [Google Scholar]
  18. B. Kearney, F. Alves, D. Grbovic, G. Karunasiri, Terahertz metamaterial absorbers with an embedded resistive layer, Opt. Mater. Express 3, 1020 (2013) [CrossRef] [Google Scholar]
  19. F. Costa, A. Monorchio, G. Manara, Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces, IEEE Trans. Antennas Propag. 58, 1551 (2010) [CrossRef] [Google Scholar]
  20. Y.Z. Cheng, R.Z. Gong, Y. Nie, X. Wang, A wideband metamaterial absorber based on a magnetic resonator loaded with lumped resistors, Chin. Phys. B 21, 127801 (2012) [CrossRef] [Google Scholar]
  21. Y.Z. Cheng, Y. Wang, Y. Nie, R. Zhou Gong, X. Xiong, X. Wang, Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements, J. Appl. Phys. 111, 44902 (2012) [CrossRef] [Google Scholar]
  22. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, L. Ran, Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption, Phys. Rev. Lett. 111, 187402 (2013) [CrossRef] [Google Scholar]
  23. N.V. Dung, P.V. Tuong, Y.J. Yoo, Y.J. Kim, B.S. Tung, V.D. Lam, J.Y. Rhee, K.W. Kim, Y.H. Kim, L.Y. Chen, Perfect and broad absorption by the active control of electric resonance in metamaterial, J. Opt. 17, 45105 (2015) [CrossRef] [Google Scholar]
  24. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100, 207402 (2008) [CrossRef] [PubMed] [Google Scholar]
  25. Y. Shen, J. Zhang, Y. Pang, L. Zheng, J. Wang, H. Ma, S. Qu, Thermally tunable ultra-wideband metamaterial absorbers based on three-dimensional water-substrate construction, Sci. Rep. 8, 4423 (2018) [CrossRef] [Google Scholar]
  26. Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, S. Qu, Transparent broadband metamaterial absorber enhanced by water-substrate incorporation, Opt. Express 26, 15665 (2018) [CrossRef] [PubMed] [Google Scholar]
  27. P.-Y. Chen, C. Argyropoulos, A. Alù, Broadening the cloaking bandwidth with non-Foster metasurfaces, Phys. Rev. Lett. 111, 233001 (2013) [CrossRef] [Google Scholar]
  28. D.M. Pozar, Microwave engineering (John Wiley & Sons, NJ, 2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.