EPJ Appl. Metamat.
Volume 6, 2019
Metamaterials Research and Development in China
Article Number 5
Number of page(s) 6
Published online 18 February 2019
  1. J. Zhao, B. Li, Z. Ning Chen, C.-W. Qiu, Redirection of sound waves using acoustic metasurface, Appl. Phys. Lett. 103 , 151604 (2013) [CrossRef] [Google Scholar]
  2. J. Zhao, B. Li, Z. Chen, C.-W. Qiu, Manipulating Acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection, Sci. Rep. 3 , 2537 (2013) [CrossRef] [Google Scholar]
  3. J. Li, C. Shen, A. Díaz-Rubio, S.A. Tretyakov, S.A. Cummer, Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts, Nat. Commun. 9 , 1342 (2018) [CrossRef] [Google Scholar]
  4. Y. Xie, W. Wang, H. Chen, A. Konneker, B.-I. Popa, S.A. Cummer, Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface, Nat. Commun. 5 , 5553 (2014) [CrossRef] [Google Scholar]
  5. Y. Tian, Q. Wei, Y. Cheng, X. Liu, Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude, Appl. Phys. Lett. 110 , 191901 (2017) [CrossRef] [Google Scholar]
  6. J. Zhang, Y. Cheng, X. Liu, Extraordinary acoustic transmission at low frequency by a tunable acoustic impedance metasurface based on coupled Mie resonators, Appl. Phys. Lett. 110 , 233502 (2017) [CrossRef] [Google Scholar]
  7. G.Y. Song, Q. Cheng, T.J. Cui, Y. Jing, Acoustic planar surface retroreflector, Phys. Rev. Mater. 2 , 065201 (2018) [CrossRef] [Google Scholar]
  8. M. Dubois, C. Shi, Y. Wang, X. Zhang, A thin and conformal metasurface for illusion acoustics of rapidly changing profiles, Appl. Phys. Lett. 110 , 151902 (2017) [CrossRef] [Google Scholar]
  9. Y. Cheng, C. Zhou, B.G. Yuan, D.J. Wu, Q. Wei, X.J. Liu, Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances, Nat. Mater. 14 , 1013 (2015) [CrossRef] [Google Scholar]
  10. Y. Li, B.M. Assouar, Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett. 108 , 063502 (2016) [CrossRef] [Google Scholar]
  11. L. Ye, C. Qiu, J. Lu, K. Tang, H. Jia, M. Ke, S. Peng, Z. Liu, Making sound vortices by metasurfaces, AIP Adv. 6 , 085007 (2016) [CrossRef] [Google Scholar]
  12. J.-p. Xia, X.-t. Zhang, H.-x. Sun, S.-q. Yuan, J. Qian, Y. Ge, Broadband tunable acoustic asymmetric focusing lens from dual-layer metasurfaces, Phys. Rev. Appl. 10 , 014016 (2018) [CrossRef] [Google Scholar]
  13. B. Yuan, Y. Cheng, X. Liu, Conversion of sound radiation pattern via gradient acoustic metasurface with space-coiling structure, Appl. Phys. Express 8 , 027301 (2015) [CrossRef] [Google Scholar]
  14. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334 , 333 (2011) [CrossRef] [PubMed] [Google Scholar]
  15. Z. Liang, J. Li, Extreme acoustic metamaterial by coiling up space, Phys. Rev. Lett. 108 , 114301 (2012) [CrossRef] [Google Scholar]
  16. G. Ma, P. Sheng, Acoustic metamaterials: from local resonances to broad horizons, Sci. Adv. 2 , e1501595 (2016) [CrossRef] [Google Scholar]
  17. H. Ge, M. Yang, C. Ma, M.-H. Lu, Y.-F. Chen, N. Fang, P. Sheng, Breaking the barriers: advances in acoustic functional materials, Nat. Sci. Rev. 5 , 159 (2017) [CrossRef] [Google Scholar]
  18. Y. Li, Acoustic metasurfaces, Physics 46 , 721 (2017) [Google Scholar]
  19. Y. Li, B. Liang, Z.-m. Gu, X.-y. Zou, J.-c. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces, Sci. Rep. 3 , 2546 (2013) [CrossRef] [Google Scholar]
  20. Y. Li, B. Liang, X. Tao, X.-f. Zhu, X.-y. Zou, J.-c. Cheng, Acoustic focusing by coiling up space, Appl. Phys. Lett. 101 , 233508 (2012) [CrossRef] [Google Scholar]
  21. S.-Y. Zuo, Q. Wei, Y. Cheng, X.-J. Liu, Mathematical operations for acoustic signals based on layered labyrinthine metasurfaces, Appl. Phys. Lett. 110 , 011904 (2017) [CrossRef] [Google Scholar]
  22. S. Zuo, Q. Wei, Y. Tian, Y. Cheng, X. Liu, Acoustic analog computing system based on labyrinthine metasurfaces, Sci. Rep. 8 , 10103 (2018) [CrossRef] [Google Scholar]
  23. S.-Y. Zuo, Y. Tian, Q. Wei, Y. Cheng, X.-J. Liu, Acoustic analog computing based on a reflective metasurface with decoupled modulation of phase and amplitude, J. Appl. Phys. 123 , 091704 (2018) [CrossRef] [Google Scholar]
  24. Y. Li, X. Jiang, R.-q. Li, B. Liang, X.-y. Zou, L.-l. Yin, J.-c. Cheng, Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces, Phys. Rev. Appl. 2 , 064002 (2014) [CrossRef] [Google Scholar]
  25. C. Liu, B. Xia, D. Yu, The spiral-labyrinthine acoustic metamaterial by coiling up space, Phys. Lett. A 381 , 3112 (2017) [CrossRef] [Google Scholar]
  26. X. Man, T. Liu, B. Xia, Z. Luo, L. Xie, J. Liu, Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale, J. Sound Vib. 423 , 322 (2018) [CrossRef] [Google Scholar]
  27. G.Y. Song, B. Huang, H.Y. Dong, Q. Cheng, T.J. Cui, Broadband focusing acoustic lens based on fractal metamaterials, Sci. Rep. 6 , 35929 (2016) [CrossRef] [Google Scholar]
  28. G.Y. Song, Q. Cheng, B. Huang, H.Y. Dong, T.J. Cui, Broadband fractal acoustic metamaterials for low-frequency sound attenuation, Appl. Phys. Lett. 109 , 131901 (2016) [CrossRef] [Google Scholar]
  29. Y.-F. Zhu, X.-Y. Zou, B. Liang, J.-C. Cheng, Broadband unidirectional transmission of sound in unblocked channel, Appl. Phys. Lett. 106 , 104301 (2015) [Google Scholar]
  30. Y.-F. Zhu, X.-Y. Zou, B. Liang, J.-C. Cheng, Acoustic one-way open tunnel by using metasurface, Appl. Phys. Lett. 107 , 113501 (2015) [CrossRef] [Google Scholar]
  31. Y.-F. Zhu, X.-D. Fan, B. Liang, J. Yang, J. Yang, L.-l. Yin, J.-C. Cheng, Multi-frequency acoustic metasurface for extraordinary reflection and sound focusing, AIP Adv. 6 , 121702 (2016) [CrossRef] [Google Scholar]
  32. Y.-F. Zhu, X.-Y. Zou, R.-Q. Li, X. Jiang, J. Tu, B. Liang, J.-C. Cheng, Dispersionless manipulation of reflected acoustic wavefront by subwavelength corrugated surface, Sci. Rep. 5 , 10966 (2014) [CrossRef] [Google Scholar]
  33. X. Liu, X. Zeng, D. Gao, W. Shen, J. Wang, S. Wang, Experimental realization for abnormal reflection caused by an acoustic metasurface with subwavelength apertures, J. Phys. D: Appl. Phys. 50 , 125303 (2017) [CrossRef] [Google Scholar]
  34. Y. Tian, Q. Wei, Y. Cheng, Z. Xu, X. Liu, Broadband manipulation of acoustic wavefronts by pentamode metasurface, Appl. Phys. Lett. 107 , 221906 (2015) [CrossRef] [Google Scholar]
  35. L. Cai, J. Wen, D. Yu, Z. Lu, X. Chen, X. Zhao, Beam steering of the acoustic metasurface under a subwavelength periodic modulation, Appl. Phys. Lett. 111 , 201902 (2017) [CrossRef] [Google Scholar]
  36. J. Mei, Y. Wu, Controllable transmission and total reflection through an impedance-matched acoustic metasurface, New J. Phys. 16 , 123007 (2014) [CrossRef] [Google Scholar]
  37. X.-P. Wang, L.-L. Wan, T.-N. Chen, A.-L. Song, F. Wang, Broadband unidirectional acoustic cloak based on phase gradient metasurfaces with two flat acoustic lenses, J. Appl. Phys. 120 , 014902 (2016) [CrossRef] [Google Scholar]
  38. A.-L. Song, T.-N. Chen, X.-P. Wang, L.-L. Wan, Waveform-preserved unidirectional acoustic transmission based on impedance matched acoustic metasurface and phononic crystal, J. Appl. Phys. 120 , 085106 (2016) [CrossRef] [Google Scholar]
  39. X.-P. Wang, L.-L. Wan, T.-N. Chen, Q.-X. Liang, A.-L. Song, Broadband acoustic diode by using two structured impedance-matched acoustic metasurfaces, Appl. Phys. Lett. 109 , 044102 (2016) [CrossRef] [Google Scholar]
  40. Y. Li, C. Shen, Y. Xie, J. Li, W. Wang, S.A. Cummer, Y. Jing, Tunable asymmetric transmission via lossy acoustic metasurfaces, Phys. Rev. Lett. 119 , 035501 (2017) [CrossRef] [Google Scholar]
  41. B. Liu, Y. Jiang, Controllable asymmetric transmission via gap-tunable acoustic metasurface, Appl. Phys. Lett. 112 , 173503 (2018) [CrossRef] [Google Scholar]
  42. F. Ju, Y. Tian, Y. Cheng, X. Liu, Asymmetric acoustic transmission with a lossy gradient-index metasurface, Appl. Phys. Lett. 113 , 121901 (2018) [CrossRef] [Google Scholar]
  43. L.-X. Han, Y.-W. Yao, X. Zhang, F.-G. Wu, H.-F. Dong, Z.-F. Mu, J.-b. Li, Acoustic metasurface for refracted wave manipulation, Phys. Lett. A 382 , 357 (2018) [CrossRef] [Google Scholar]
  44. D.-C. Chen, X.-F. Zhu, Q. Wei, D.-J. Wu, X.-J. Liu, Broadband acoustic focusing by Airy-like beams based on acoustic metasurfaces, J. Appl. Phys. 123 , 044503 (2018) [CrossRef] [Google Scholar]
  45. X. Jiang, B. Liang, J.-C. Cheng, C.-W. Qiu, Twisted acoustics: metasurface‐enabled multiplexing and demultiplexing, Adv. Mater. 30 , 1800257 (2018) [CrossRef] [Google Scholar]
  46. G. Ma, X. Fan, P. Sheng, M. Fink, Shaping reverberating sound fields with an actively tunable metasurface, Proc. Natl. Acad. Sci. 2018 , 01175 (2018) [Google Scholar]
  47. X. Jiang, Y. Li, B. Liang, J.-c. Cheng, L. Zhang, Convert acoustic resonances to orbital angular momentum, Phys. Rev. Lett. 117 , 034301 (2016) [CrossRef] [Google Scholar]
  48. B. Xie, K. Tang, H. Cheng, Z. Liu, S. Chen, J. Tian, Coding acoustic metasurfaces, Adv. Mater. 29 , 1603507 (2017) [CrossRef] [Google Scholar]
  49. H. Tang, Z. Chen, N. Tang, S. Li, Y. Shen, Y. Peng, X. Zhu, J. Zang, Hollow-out patterning ultrathin acoustic metasurfaces for multifunctionalities using soft fiber/rigid bead networks, Adv. Funct. Mater. 28 , 1801127 (2018) [CrossRef] [Google Scholar]
  50. J. Zhou, X. Zhang, Y. Fang, Three-dimensional acoustic characteristic study of porous metasurface, Compos. Struct. 176 , 1005 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.