Issue
EPJ Appl. Metamat.
Volume 6, 2019
Metamaterials Research and Development in Korea
Article Number 12
Number of page(s) 15
DOI https://doi.org/10.1051/epjam/2019010
Published online 22 February 2019
  1. C. Caloz, T. Itoh, Electromagnetic metamaterials, transmission line theory and microwave applications, 1st ed. (John Wiley & Sons, Inc., New York, 2006) [Google Scholar]
  2. N. Engheta, R.W. Ziolkowski, Metamaterials: physics and engineering explorations, 1st ed. (John Wiley & Sons, Inc., New York, 2006) [Google Scholar]
  3. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructure, Phys. Rev. Lett. 76 , 4773 (1996) [CrossRef] [PubMed] [Google Scholar]
  4. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech. 47 , 2075 (1999) [CrossRef] [Google Scholar]
  5. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 , 4184 (2000) [CrossRef] [PubMed] [Google Scholar]
  6. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens, Science 308 , 534 (2005) [CrossRef] [PubMed] [Google Scholar]
  7. Y. Dong, T. Itoh, Metamaterial-based antennas, Proc. IEEE 100 , 2271 (2012) [CrossRef] [Google Scholar]
  8. J. Bonache, I. Gil, J. Garcia-Garcia, F. Martin, Novel microstrip bandpass filters based on complementary split-ring resonators, IEEE Trans. Microw. Theory Tech. 54 , 265 (2006) [CrossRef] [Google Scholar]
  9. D. Schurig et al., Metamaterial electromagnetic cloak at microwave frequencies, Science 314 , 977 (2006) [CrossRef] [PubMed] [Google Scholar]
  10. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100 , 207402 (2008) [CrossRef] [PubMed] [Google Scholar]
  11. A. Fallahi et al., Thin wideband radar absorbers, IEEE Trans. Antennas Propag. 58 , 4051 (2010) [CrossRef] [Google Scholar]
  12. H. Wakatsuchi, D.F. Sievenpiper, C. Christopoulos, Designing flexible and versatile metamaterial absorbers, IEEE Electromagn. Compat. Mag. 5 , 76 (2016) [CrossRef] [Google Scholar]
  13. J.-J. Greffet et al., Coherent emission of light by thermal sources, Nature 416 , 61 (2002) [CrossRef] [PubMed] [Google Scholar]
  14. J. Rosenberg, R.V. Shenoi, T.E. Vandervelde, S. Krishna, O. Painter, A multispectral and polarization-selective surface-plasmon resonant midinfrared detector, Appl. Phys. Lett. 95 , 161101 (2009) [CrossRef] [Google Scholar]
  15. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor, Nano Lett. 10 , 2342 (2010) [CrossRef] [PubMed] [Google Scholar]
  16. M. Diem, T. Koschny, C.M. Soukoulis, Wide-angle perfect absorber/thermal emitter in the terahertz regime, Phys. Rev. B 79 , 033101 (2009) [CrossRef] [Google Scholar]
  17. P.L. Richards, Bolometers for infrared and millimeter waves, J. Appl. Phys. 76 , 1 (1994) [NASA ADS] [CrossRef] [Google Scholar]
  18. O. Luukkonen, F. Costa, C.R. Simovski, A. Monorchio, S.A. Tretyakov, A thin electromagnetic absorber for wide incidence angles and both polarizations, IEEE Trans. Antennas Propag. 57 , 3119 (2009) [CrossRef] [Google Scholar]
  19. H. Tao et al., A metamaterial absorber for the terahertz regime: design, fabrication and characterization, Opt. Exp. 16 , 7181 (2008) [CrossRef] [PubMed] [Google Scholar]
  20. H. Li et al., Ultrathin multiband gigahertz metamaterial absorbers, J. Appl. Phys. 110 , 014909 (2011) [CrossRef] [Google Scholar]
  21. D.M. Pozar, Microwave engineering, 2nd ed. (John Wiley & Sons, Inc., New York, 2008) [Google Scholar]
  22. H.-X. Xu et al., Tripleband polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber, Phys. Rev. B 86 , 205104 (2012) [CrossRef] [Google Scholar]
  23. C.G. Hu, X. Li, Q. Feng, X.N. Chen, X.G. Luo, Investigation on the role of the dielectric loss in metamaterial absorber, Opt. Exp. 18 , 6598 (2010) [CrossRef] [PubMed] [Google Scholar]
  24. J.E. Raynolds, Ohmic loss in frequency-selective surfaces, J. Appl. Phys. 93 , 5346 (2003) [CrossRef] [Google Scholar]
  25. X. Shen et al., Polarization-independent wide-angle triple-band metamaterial absorber, Opt. Exp. 19 , 9401 (2011) [CrossRef] [PubMed] [Google Scholar]
  26. L. Li, Y. Yang, C. Liang, A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes, J. Appl. Phys. 110 , 063702 (2011) [CrossRef] [Google Scholar]
  27. H. Zhai, C. Zhan, Z. Li, C. Liang, A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability, IEEE Antennas Wireless Propag. 14 , 241 (2015) [CrossRef] [Google Scholar]
  28. J.W. Park et al., Multi-band metamaterial absorber based on the arrangement of donut-type resonators, Opt. Exp. 21 , 9691 (2013) [CrossRef] [Google Scholar]
  29. S. Bhattacharyya, S. Ghosh, K.V. Srivastava, Equivalent circuit model of an ultra-thin polarization-independent triple band metamaterial absorber, AIP Adv. 4 , 097127 (2014) [CrossRef] [Google Scholar]
  30. Z. Mao et al., Multi-band polarization-insensitive metamaterial absorber based on Chinese ancient coin-shaped structures, J. Appl. Phys. 115 , 204505 (2014) [CrossRef] [Google Scholar]
  31. D. Lee, J.G. Hwang, D. Lim, T. Hara, S. Lim, Incident angle- and polarization-insensitive metamaterial absorber using circular sectors, Sci. Rep. 6 , 27155 (2016) [CrossRef] [Google Scholar]
  32. S. Ghosh, K.V. Srivastava, An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory, IEEE Antennas Wireless Propag. Lett. 14 , 511 (2015) [CrossRef] [Google Scholar]
  33. F. Costa, A. Monorchio, G. Manara, Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces, IEEE Trans. Antennas Propag. 58 , 1551 (2010) [CrossRef] [Google Scholar]
  34. S.A. Tretyakov, S.I. Maslovski, Thin absorbing structure for all incidence angles based on the use of a high-impedance surface, Microw. Opt. Technol. Lett. 38 , 175 (2003) [CrossRef] [Google Scholar]
  35. T.T. Nguyen, D. Lee, H.K. Sung, S. Lim, Angle- and polarization-insensitive metamaterial absorber based on vertical and horizontal symmetric slotted sectors, Appl. Opt. 55 , 8301 (2016) [CrossRef] [Google Scholar]
  36. O. Luukkonen et al., Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches, IEEE Trans. Antennas Propag. 56 , 1623 (2008) [CrossRef] [Google Scholar]
  37. T.T. Nguyen, S. Lim, Wide incidence angle-insensitive metamaterial absorber for both TE and TM polarization using eight-circular-sector, Sci. Rep. 7 , 3204 (2017) [CrossRef] [Google Scholar]
  38. B. Sanz-Izquierdo, E.A. Parker, Dual polarized reconfigurable frequency selective surfaces, IEEE Trans. Antennas Propag. 62 , 764 (2014) [CrossRef] [Google Scholar]
  39. D. Lim, D. Lee, S. Lim, Angle- and polarization-insensitive metamaterial absorber using via array, Sci. Rep. 6 , 39686 (2016) [CrossRef] [Google Scholar]
  40. Y. Cheng, Y. Nie, R. Gong, Metamaterial absorber and extending absorbance bandwidth based on multi-cross resonators, Appl. Phys. B 111 , 483 (2013) [CrossRef] [Google Scholar]
  41. S. Ghosh, S. Bhattacharyya, D. Chaurasiya, K.V. Srivastava, Polarisation-insensitive and wide-angle multi-layer metamaterial absorber with variable bandwidths, Electron. Lett. 51 , 1050 (2015) [CrossRef] [Google Scholar]
  42. M. Yoo, H.K. Kim, S. Lim, Angular- and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology, IEEE Antennas Wireless Propag. Lett. 15 , 414 (2016) [CrossRef] [Google Scholar]
  43. W.F. Bahret, The beginnings of stealth technology, IEEE Trans. Aerosp. Elect. Syst. 29 , 1377 (1993) [CrossRef] [Google Scholar]
  44. S. Celozzi, R. Araneo, G. Lovat, Electromagnetic shielding, 1st ed. (John Wiley & Sons, Inc., New York, 2008) [CrossRef] [Google Scholar]
  45. J. Lee, S. Lim, Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance, Electron. Lett. 47 , 8 (2011) [CrossRef] [Google Scholar]
  46. H. Yang et al., Low RCS metamaterial absorber and extending bandwidth based on electromagnetic resonances, Prog. Electromagn. Res. M 33 , 31 (2013) [CrossRef] [Google Scholar]
  47. S. Bhattacharyya, S. Ghosh, D. Chaurasiya, K.V. Srivastava, Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber, Appl. Phys. A 118 , 207 (2015) [CrossRef] [Google Scholar]
  48. J. Lee, M. Yoo, S. Lim, A study of ultra-thin single-layer frequency selective surface microwave absorbers with three different bandwidths using double resonance, IEEE Trans. Antennas Propag. 63 , 221 (2015) [CrossRef] [Google Scholar]
  49. S. Ghosh, S. Bhattacharyya, K.V. Srivastava, Bandwidth-enhancement of an ultrathin polarization insensitive metamaterial absorber, Microw. Opt. Technol. Lett. 56 , 350 (2014) [CrossRef] [Google Scholar]
  50. D. Kundu, A. Mohan, A. Chakraborty, Ultrathin polarization independent absorber with enhanced bandwidth by incorporating giusepe peano fractal in square ring, Microw. Opt. Technol. Lett. 57 , 1072 (2015) [CrossRef] [Google Scholar]
  51. T.T. Nguyen, S. Lim, Bandwidth-enhanced and wide-angle-of-incidence metamaterial absorber using a hybrid unit cell, Sci. Rep. 7 , 4814 (2017) [CrossRef] [Google Scholar]
  52. T.T. Nguyen, S. Lim, Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators, Appl. Phys. Lett. 112 , 021605 (2018) [CrossRef] [Google Scholar]
  53. B.A. Munk, Frequency selective surfaces: theory and design, 1st ed. (John Wiley & Sons, Inc., New York, 2000) [Google Scholar]
  54. Y. Shang, Z. Shen, S. Xiao, On the design of single-layer circuit analog absorber using double-square-loop array, IEEE Trans. Antennas Propag. 61 , 6022 (2013) [CrossRef] [Google Scholar]
  55. M. Yoo, S. Lim, Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer, IEEE Trans. Antennas Propag. 62 , 2652 (2014) [CrossRef] [Google Scholar]
  56. B.K. Kim, B. Lee, Design of metamaterial-inspired wideband absorber at X-Band adopting trumpet structures, KIEES J. Electromagn. Eng. Sci. 14 , 314 (2014) [CrossRef] [Google Scholar]
  57. S. Ghosh, S. Bhattacharyya, K.V. Srivastava, Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber, IET Microw. Antennas Propag. 10 , 850 (2016) [CrossRef] [Google Scholar]
  58. T.T. Nguyen, S. Lim, Design of metamaterial absorber using eight-resistive-arm cell for simultaneous broadband and wide-incidence-angle absorption, Sci. Rep. 8 , 6633 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.