Issue
EPJ Appl. Metamat.
Volume 4, 2017
Metamaterials'2017 – Metamaterials and Novel Wave Phenomena: Theory, Design and Application
Article Number 8
Number of page(s) 6
DOI https://doi.org/10.1051/epjam/2017008
Published online 31 October 2017
  1. F. Martin, Artificial Transmission Lines for RF and Microwave Applications (John Wiley, Hoboken, NJ, USA, 2015) [CrossRef]
  2. R. Marques, F. Martín, M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (John Wiley, Hoboken, NJ, USA, 2007) [CrossRef]
  3. F. Martín, F. Falcone, J. Bonache, R. Marqués, M. Sorolla, Split ring resonator based left handed coplanar waveguide, Appl. Phys. Lett. 83, 4652 (2003) [CrossRef]
  4. F. Falcone, T. Lopetegi, J.D. Baena, R. Marqués, F. Martín, M. Sorolla, Effective negative-ε stop-band microstrip lines based on complementary split ring resonators, IEEE Microw, Wireless Compon. Lett. 14, 280 (2004) [CrossRef]
  5. J.D. Baena, J. Bonache, F. Martín, R. Marqués, F. Falcone, T. Lopetegi, M.A.G. Laso, J. García, I. Gil, M. Flores-Portillo, M. Sorolla, Equivalent circuit models for split ring resonators and complementary split rings resonators coupled to planar transmission lines, IEEE Trans. Microw. Theory Techn. 53, 1451 (2005) [CrossRef]
  6. J. Bonache, F. Martín, I. Gil, J. García-García, R. Marqués, M. Sorolla, Microstrip bandpass filters with wide bandwidth and compact dimensions, Microw. Opt. Technol. Lett. 46, 343 (2005) [CrossRef] [EDP Sciences]
  7. J. Bonache, I. Gil, J. García-García, F. Martín, Novel microstrip band pass filters based on complementary split rings resonators, IEEE Trans. Microw. Theory Techn. 54, 265 (2006) [CrossRef]
  8. G. Sisó, J. Bonache, M. Gil, F. Martín, Application of resonant-type metamaterial transmission lines to the design of enhanced bandwidth components with compact dimensions, Microw. Opt. Technol. Lett. 50, 127 (2008) [CrossRef]
  9. J. Bonache, G. Sisó, M. Gil, A. Iniesta, J. García-Rincón, F. Martín, Application of composite right/left handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual band microwave components, IEEE Microw. Wireless Compon. Lett. 18, 524 (2008) [CrossRef]
  10. M. Durán-Sindreu, A. Vélez, F. Aznar, G. Sisó, J. Bonache, F. Martín, Application of open split ring resonators and open complementary split ring resonators to the synthesis of artificial transmission lines and microwave passive components, IEEE Trans. Microw. Theory Techn. 57, 3395 (2009) [CrossRef]
  11. F.J. Herraiz-Martínez, G. Zamora, F. Paredes, F. Martín, J. Bonache, Multiband printed monopole antennas loaded with open complementary split ring resonators for PANs and WLANs, IEEE Ant. Wirel. Propag. Lett. 10, 1528 (2011) [CrossRef]
  12. F.J. Herraiz-Martínez, F. Paredes, G. Zamora, F. Martín, J. Bonache, Dual-band printed dipole antenna loaded with open complementary split-ring resonators (OCSRRs) for wireless applications, Microw. Opt. Technol. Lett. 54, 1014 (2012) [CrossRef]
  13. J. Naqui, M. Durán-Sindreu, F. Martín, Novel sensors based on the symmetry properties of split ring resonators (SRRs), Sensors 11, 7545 (2011) [CrossRef]
  14. C. Mandel, B. Kubina, M. Schüßler, R. Jakoby, Passive chipless wireless sensor for two-dimensional displacement measurement, in: Proceedings of 41st European Microwave Conference, Manchester, UK, 2011, pp. 79–82
  15. M. Puentes, C. Weiss, M. Schüßler, R. Jakoby, Sensor array based on split ring resonators for analysis of organic tissues, IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, Maryland, June 2011
  16. M.S. Boybay, O.M. Ramahi, Material characterization using complementary split-ring resonators, IEEE Trans. Instrum. Meas. 61, 3039 (2012) [CrossRef]
  17. C.-S. Lee, C.-L. Yang, Complementary split-ring resonators for measuring dielectric constants and loss tangents, IEEE Microw. Wireless Compon. Lett. 24, 563 (2014) [CrossRef]
  18. A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, D. Abbott, High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization, IEEE Sens. J. 14, 1345 (2014) [CrossRef]
  19. C.-L. Yang, C.-S. Lee, K.-W. Chen, K.-Z. Chen, Noncontact measurement of complex permittivity and thickness by using planar resonators, IEEE Trans. Microw. Theor. Technol. 64, 247 (2016) [CrossRef]
  20. L. Su, J. Mata-Contreras, P. Vélez, F. Martín, Estimation of conductive losses in complementary split ring resonator (CSRR) loading an embedded microstrip line and applications, in: IEEE MTT-S Int. Microw. Symp. (IMS'17), Honolulu, Hawaii, June 2017
  21. J. Naqui, M. Durán-Sindreu, F. Martín, Alignment and position sensors based on split ring resonators, Sensors 12, 11790 (2012) [CrossRef]
  22. A. Karami-Horestani, C. Fumeaux, S.F. Al-Sarawi, D. Abbott, Displacement sensor based on diamond-shaped tapered split ring resonator, IEEE Sens. J. 13, 1153 (2013) [CrossRef]
  23. A.K. Horestani, J. Naqui, D. Abbott, C. Fumeaux, F. Martín, Two-dimensional displacement and alignment sensor based on reflection coefficients of open microstrip lines loaded with split ring resonators, Electron. Lett. 50, 620 (2014) [CrossRef]
  24. J. Naqui, F. Martín, Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors, IEEE Trans. Microw. Theor. Technol. 61, 4700 (2013) [CrossRef]
  25. J. Naqui, F. Martín, Angular displacement and velocity sensors based on electric-LC (ELC) loaded microstrip lines, IEEE Sens. J. 14, 939 (2014) [CrossRef]
  26. J. Naqui, J. Coromina, A. Karami-Horestani, C. Fumeaux, F. Martín, Angular displacement and velocity sensors based on coplanar waveguides (CPWs) loaded with S-shaped split ring resonator (S-SRR), Sensors 15, 9628 (2015) [CrossRef]
  27. L. Su, J. Mata-Contreras, J. Naqui, F. Martín, Splitter/combiner microstrip sections loaded with pairs of complementary split ring resonators (CSRRs): modeling and optimization for differential sensing applications, IEEE Trans. Microw. Theor. Technnol. 64, 4362 (2016) [CrossRef]
  28. L. Su, J. Mata-Contreras, J. Naqui, F. Martín, Configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) for sensing applications, Sensors 16, 2195 (2016), doi:10.3390/s16122195 [CrossRef]
  29. J. Naqui, F. Martín, Application of broadside-coupled split ring resonator (BC-SRR) loaded transmission lines to the design of rotary encoders for space applications, IEEE MTT-S Int. Microw. Symp. (IMS'16), San Francisco, 2016
  30. J. Mata-Contreras, C. Herrojo, F. Martín, Application of split ring resonator (SRR) loaded transmission lines to the design of angular displacement and velocity sensors for space applications, IEEE Trans. Microw. Theory Techn. (to be published)
  31. S. Preradovic, N.C. Karmakar, Chipless RFID: bar code of the future, IEEE Microw. Mag. 11, 87 (2010) [CrossRef]
  32. S. Preradovic, N.C. Karmakar, Multiresonator-based chipless RFID: barcode of the future (Springer, 2011)
  33. S. Preradovic, I. Balbin, N.C. Karmakar, G.F. Swiegers, Multiresonator-based chipless RFID system for low-cost item tracking, IEEE Trans. Microw. Theor. Technol. 57, 1411 (2009) [CrossRef]
  34. S. Preradovic, N.C. Karmakar, Design of chipless RFID tag for operation on flexible laminates, IEEE Anten. Wirel. Propag. Lett. 9, 207 (2010) [CrossRef]
  35. C. Herrojo, J. Naqui, F. Paredes, F. Martín, Spectral signature barcodes based on s-shaped split ring resonators (S-SRR), EPJ Appl. Metamater. 3, 1 (2016) [CrossRef] [EDP Sciences]
  36. C. Herrojo, J. Naqui, F. Paredes, F. Martín, Spectral signature barcodes implemented by multi-state multi-resonator circuits for chipless RFID tags, in: IEEE MTT-S International Microwave Symposium (IMS'16), San Francisco, 2016
  37. C. Herrojo, F. Paredes, J. Mata-Contreras, S. Zuffanelli, F. Martín, Multi-state multi-resonator spectral signature barcodes implemented by means of S-shaped Split Ring Resonators (S-SRR), IEEE Trans. Microw. Theor. Technol. 65, 2341 (2017) [CrossRef]
  38. O. Rance, R. Siragusa, P. Lemaître-Auger, E. Perret, Toward RCS magnitude level coding for chipless RFID, IEEE Trans. Microw. Theor. Technol. 64, 2315 (2016) [CrossRef]
  39. J. McVay, A. Hoorfar, N. Engheta, Space-filling curve RFID tags, in: Proceedings of 2006 IEEE Radio Wireless Symposium, 2006, pp. 199–202 [CrossRef]
  40. I. Jalaly, D. Robertson, Capacitively-tuned split microstrip resonators for RFID barcodes, in: Proceedings of European Microwave Conference, 2005, pp. 4–7
  41. H.-S. Jang, W.-G. Lim, K.-S. Oh, S.-M. Moon, J.-W. Yu, Design of low-cost chipless system using printable chipless tag with electromagnetic code, IEEE Microw. Wireless Compon. Lett. 20, 640 (2010) [CrossRef]
  42. A. Vena, E. Perret, S. Tedjini, A fully printable chipless RFID tag with detuning correction technique, IEEE Microw. Wirel. Compon. Lett. 22, 209 (2012) [CrossRef]
  43. A. Vena, E. Perret, S. Tedjini, Design of compact and auto-compensated single-layer chipless RFID tag, IEEE Trans. Microw. Theor. Technol. 60, 2913 (2012) [CrossRef]
  44. A. Vena, E. Perret, S. Tedjini, High-capacity chipless RFID tag insensitive to the polarization, IEEE Trans. Ant. Propag. 60, 4509 (2012) [CrossRef]
  45. M.A. Islam, N.C. Karmakar, A novel compact printable dual-polarized chipless RFID system, IEEE Trans. Microw. Theor. Technol. 60, 2142 (2012) [CrossRef]
  46. A. Vena, E. Perret, S. Tedjini, Chipless RFID tag using hybrid coding technique, IEEE Trans. Microw. Theor. Technol. 59, 3356 (2011) [CrossRef]
  47. A. Vena, E. Perret, S. Tedjini, A compact chipless RFID tag using polarization diversity for encoding and sensing, in: 2012 IEEE Int. Conf. RFID, 2012, pp. 191–197 [CrossRef]
  48. I. Balbin, N.C. Karmakar, Phase-encoded chipless RFID transponder for large scale low cost applications, IEEE Microw. Wirel. Comp. Lett. 19, 509 (2009) [CrossRef]
  49. S. Genovesi, F. Costa, A. Monorchio, G. Manara, Chipless RFID tag exploiting multifrequency delta-phase quantization encoding, IEEE Ant. Wirel. Propag. Lett. 15, 738 (2015) [CrossRef]
  50. C. Herrojo, J. Mata-Contreras, F. Paredes, F. Martín, Near-Field chipless RFID encoders with sequential bit reading and high data capacity, in: IEEE MTT-S Int. Microw. Symp. (IMS'17), Honolulu, Hawaii, 2017
  51. C. Herrojo, J. Mata-Contreras, F. Paredes, F. Martín, Chipless RFID tags based on metamaterial concepts, in: The 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena (Metamaterials), 2017
  52. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T.M. Grzegorczyk, J.A. Kong, Left-handed materials composed of only S-shaped resonators, Phys. Rev. E. 70, 1 (2004)
  53. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T.M. Grzegorczyk, J.A. Kong, Negative refraction of a combined double S-shaped metamaterial, Appl. Phys. Lett. 86, 151909 (2005) [CrossRef]
  54. H. Chen, L.-X. Ran, H.-F. Jiang Tao, X.-M. Zhang, K.-S. Cheng, T.M. Grzegorczyk, J.A. Kong, Magnetic properties of S-shaped split ring resonators, Prog. Electromagn. Res. 51, 231 (2005) [CrossRef]
  55. E. Shamonina, V.A. Kalinin, K.H. Ringhofer, L. Solymar, Magneto-inductive waveguide, Electron. Lett. 38, 371 (2002) [CrossRef]
  56. E. Shamonina, V.A. Kalinin, K.H. Ringhofer, L. Solymar, Magneto-inductive waves in one, two and three dimensions, J. Appl. Phys. 92, 6252 (2002) [CrossRef]
  57. M.C.K. Wiltshire, E. Shamonina, I.R. Young, L. Solymar, Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment, Electron. Lett. 39, 215 (2003) [CrossRef]
  58. E. Shamonina, L. Solymar, Properties of magnetically coupled metamaterial elements, J. Magn. Magn. Mat. 300, 38 (2006) [CrossRef]
  59. R.R.A. Syms, E. Shamonina, V. Kalinin, L. Solymar, A theory of metamaterials based on periodically loaded transmission lines: interaction between magnetoinductive and electromagnetic waves, J. Appl. Phys. 97, 064909 (2005) [CrossRef]
  60. M.J. Freire, R. Marqués, F. Medina, M.A.G. Laso, F. Martin, Planar magnetoinductive wave transducers: theory and applications, Appl. Phys. Lett. 85, 4439 (2004) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.