Issue
EPJ Appl. Metamat.
Volume 4, 2017
Metamaterials'2017 – Metamaterials and Novel Wave Phenomena: Theory, Design and Application
Article Number 8
Number of page(s) 6
DOI https://doi.org/10.1051/epjam/2017008
Published online 31 October 2017
  1. F. Martin, Artificial Transmission Lines for RF and Microwave Applications (John Wiley, Hoboken, NJ, USA, 2015) [CrossRef] [Google Scholar]
  2. R. Marques, F. Martín, M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (John Wiley, Hoboken, NJ, USA, 2007) [CrossRef] [Google Scholar]
  3. F. Martín, F. Falcone, J. Bonache, R. Marqués, M. Sorolla, Split ring resonator based left handed coplanar waveguide, Appl. Phys. Lett. 83, 4652 (2003) [CrossRef] [Google Scholar]
  4. F. Falcone, T. Lopetegi, J.D. Baena, R. Marqués, F. Martín, M. Sorolla, Effective negative-ε stop-band microstrip lines based on complementary split ring resonators, IEEE Microw, Wireless Compon. Lett. 14, 280 (2004) [CrossRef] [Google Scholar]
  5. J.D. Baena, J. Bonache, F. Martín, R. Marqués, F. Falcone, T. Lopetegi, M.A.G. Laso, J. García, I. Gil, M. Flores-Portillo, M. Sorolla, Equivalent circuit models for split ring resonators and complementary split rings resonators coupled to planar transmission lines, IEEE Trans. Microw. Theory Techn. 53, 1451 (2005) [CrossRef] [Google Scholar]
  6. J. Bonache, F. Martín, I. Gil, J. García-García, R. Marqués, M. Sorolla, Microstrip bandpass filters with wide bandwidth and compact dimensions, Microw. Opt. Technol. Lett. 46, 343 (2005) [CrossRef] [EDP Sciences] [Google Scholar]
  7. J. Bonache, I. Gil, J. García-García, F. Martín, Novel microstrip band pass filters based on complementary split rings resonators, IEEE Trans. Microw. Theory Techn. 54, 265 (2006) [CrossRef] [Google Scholar]
  8. G. Sisó, J. Bonache, M. Gil, F. Martín, Application of resonant-type metamaterial transmission lines to the design of enhanced bandwidth components with compact dimensions, Microw. Opt. Technol. Lett. 50, 127 (2008) [CrossRef] [Google Scholar]
  9. J. Bonache, G. Sisó, M. Gil, A. Iniesta, J. García-Rincón, F. Martín, Application of composite right/left handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual band microwave components, IEEE Microw. Wireless Compon. Lett. 18, 524 (2008) [CrossRef] [Google Scholar]
  10. M. Durán-Sindreu, A. Vélez, F. Aznar, G. Sisó, J. Bonache, F. Martín, Application of open split ring resonators and open complementary split ring resonators to the synthesis of artificial transmission lines and microwave passive components, IEEE Trans. Microw. Theory Techn. 57, 3395 (2009) [CrossRef] [Google Scholar]
  11. F.J. Herraiz-Martínez, G. Zamora, F. Paredes, F. Martín, J. Bonache, Multiband printed monopole antennas loaded with open complementary split ring resonators for PANs and WLANs, IEEE Ant. Wirel. Propag. Lett. 10, 1528 (2011) [CrossRef] [Google Scholar]
  12. F.J. Herraiz-Martínez, F. Paredes, G. Zamora, F. Martín, J. Bonache, Dual-band printed dipole antenna loaded with open complementary split-ring resonators (OCSRRs) for wireless applications, Microw. Opt. Technol. Lett. 54, 1014 (2012) [CrossRef] [Google Scholar]
  13. J. Naqui, M. Durán-Sindreu, F. Martín, Novel sensors based on the symmetry properties of split ring resonators (SRRs), Sensors 11, 7545 (2011) [CrossRef] [Google Scholar]
  14. C. Mandel, B. Kubina, M. Schüßler, R. Jakoby, Passive chipless wireless sensor for two-dimensional displacement measurement, in: Proceedings of 41st European Microwave Conference, Manchester, UK, 2011, pp. 79–82 [Google Scholar]
  15. M. Puentes, C. Weiss, M. Schüßler, R. Jakoby, Sensor array based on split ring resonators for analysis of organic tissues, IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, Maryland, June 2011 [Google Scholar]
  16. M.S. Boybay, O.M. Ramahi, Material characterization using complementary split-ring resonators, IEEE Trans. Instrum. Meas. 61, 3039 (2012) [CrossRef] [Google Scholar]
  17. C.-S. Lee, C.-L. Yang, Complementary split-ring resonators for measuring dielectric constants and loss tangents, IEEE Microw. Wireless Compon. Lett. 24, 563 (2014) [CrossRef] [Google Scholar]
  18. A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, D. Abbott, High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization, IEEE Sens. J. 14, 1345 (2014) [CrossRef] [Google Scholar]
  19. C.-L. Yang, C.-S. Lee, K.-W. Chen, K.-Z. Chen, Noncontact measurement of complex permittivity and thickness by using planar resonators, IEEE Trans. Microw. Theor. Technol. 64, 247 (2016) [CrossRef] [Google Scholar]
  20. L. Su, J. Mata-Contreras, P. Vélez, F. Martín, Estimation of conductive losses in complementary split ring resonator (CSRR) loading an embedded microstrip line and applications, in: IEEE MTT-S Int. Microw. Symp. (IMS'17), Honolulu, Hawaii, June 2017 [Google Scholar]
  21. J. Naqui, M. Durán-Sindreu, F. Martín, Alignment and position sensors based on split ring resonators, Sensors 12, 11790 (2012) [CrossRef] [Google Scholar]
  22. A. Karami-Horestani, C. Fumeaux, S.F. Al-Sarawi, D. Abbott, Displacement sensor based on diamond-shaped tapered split ring resonator, IEEE Sens. J. 13, 1153 (2013) [CrossRef] [Google Scholar]
  23. A.K. Horestani, J. Naqui, D. Abbott, C. Fumeaux, F. Martín, Two-dimensional displacement and alignment sensor based on reflection coefficients of open microstrip lines loaded with split ring resonators, Electron. Lett. 50, 620 (2014) [CrossRef] [Google Scholar]
  24. J. Naqui, F. Martín, Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors, IEEE Trans. Microw. Theor. Technol. 61, 4700 (2013) [CrossRef] [Google Scholar]
  25. J. Naqui, F. Martín, Angular displacement and velocity sensors based on electric-LC (ELC) loaded microstrip lines, IEEE Sens. J. 14, 939 (2014) [CrossRef] [Google Scholar]
  26. J. Naqui, J. Coromina, A. Karami-Horestani, C. Fumeaux, F. Martín, Angular displacement and velocity sensors based on coplanar waveguides (CPWs) loaded with S-shaped split ring resonator (S-SRR), Sensors 15, 9628 (2015) [CrossRef] [Google Scholar]
  27. L. Su, J. Mata-Contreras, J. Naqui, F. Martín, Splitter/combiner microstrip sections loaded with pairs of complementary split ring resonators (CSRRs): modeling and optimization for differential sensing applications, IEEE Trans. Microw. Theor. Technnol. 64, 4362 (2016) [CrossRef] [Google Scholar]
  28. L. Su, J. Mata-Contreras, J. Naqui, F. Martín, Configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) for sensing applications, Sensors 16, 2195 (2016), doi:10.3390/s16122195 [CrossRef] [Google Scholar]
  29. J. Naqui, F. Martín, Application of broadside-coupled split ring resonator (BC-SRR) loaded transmission lines to the design of rotary encoders for space applications, IEEE MTT-S Int. Microw. Symp. (IMS'16), San Francisco, 2016 [Google Scholar]
  30. J. Mata-Contreras, C. Herrojo, F. Martín, Application of split ring resonator (SRR) loaded transmission lines to the design of angular displacement and velocity sensors for space applications, IEEE Trans. Microw. Theory Techn. (to be published) [Google Scholar]
  31. S. Preradovic, N.C. Karmakar, Chipless RFID: bar code of the future, IEEE Microw. Mag. 11, 87 (2010) [CrossRef] [Google Scholar]
  32. S. Preradovic, N.C. Karmakar, Multiresonator-based chipless RFID: barcode of the future (Springer, 2011) [Google Scholar]
  33. S. Preradovic, I. Balbin, N.C. Karmakar, G.F. Swiegers, Multiresonator-based chipless RFID system for low-cost item tracking, IEEE Trans. Microw. Theor. Technol. 57, 1411 (2009) [CrossRef] [Google Scholar]
  34. S. Preradovic, N.C. Karmakar, Design of chipless RFID tag for operation on flexible laminates, IEEE Anten. Wirel. Propag. Lett. 9, 207 (2010) [CrossRef] [Google Scholar]
  35. C. Herrojo, J. Naqui, F. Paredes, F. Martín, Spectral signature barcodes based on s-shaped split ring resonators (S-SRR), EPJ Appl. Metamater. 3, 1 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  36. C. Herrojo, J. Naqui, F. Paredes, F. Martín, Spectral signature barcodes implemented by multi-state multi-resonator circuits for chipless RFID tags, in: IEEE MTT-S International Microwave Symposium (IMS'16), San Francisco, 2016 [Google Scholar]
  37. C. Herrojo, F. Paredes, J. Mata-Contreras, S. Zuffanelli, F. Martín, Multi-state multi-resonator spectral signature barcodes implemented by means of S-shaped Split Ring Resonators (S-SRR), IEEE Trans. Microw. Theor. Technol. 65, 2341 (2017) [CrossRef] [Google Scholar]
  38. O. Rance, R. Siragusa, P. Lemaître-Auger, E. Perret, Toward RCS magnitude level coding for chipless RFID, IEEE Trans. Microw. Theor. Technol. 64, 2315 (2016) [CrossRef] [Google Scholar]
  39. J. McVay, A. Hoorfar, N. Engheta, Space-filling curve RFID tags, in: Proceedings of 2006 IEEE Radio Wireless Symposium, 2006, pp. 199–202 [CrossRef] [Google Scholar]
  40. I. Jalaly, D. Robertson, Capacitively-tuned split microstrip resonators for RFID barcodes, in: Proceedings of European Microwave Conference, 2005, pp. 4–7 [Google Scholar]
  41. H.-S. Jang, W.-G. Lim, K.-S. Oh, S.-M. Moon, J.-W. Yu, Design of low-cost chipless system using printable chipless tag with electromagnetic code, IEEE Microw. Wireless Compon. Lett. 20, 640 (2010) [CrossRef] [Google Scholar]
  42. A. Vena, E. Perret, S. Tedjini, A fully printable chipless RFID tag with detuning correction technique, IEEE Microw. Wirel. Compon. Lett. 22, 209 (2012) [CrossRef] [Google Scholar]
  43. A. Vena, E. Perret, S. Tedjini, Design of compact and auto-compensated single-layer chipless RFID tag, IEEE Trans. Microw. Theor. Technol. 60, 2913 (2012) [CrossRef] [Google Scholar]
  44. A. Vena, E. Perret, S. Tedjini, High-capacity chipless RFID tag insensitive to the polarization, IEEE Trans. Ant. Propag. 60, 4509 (2012) [CrossRef] [Google Scholar]
  45. M.A. Islam, N.C. Karmakar, A novel compact printable dual-polarized chipless RFID system, IEEE Trans. Microw. Theor. Technol. 60, 2142 (2012) [CrossRef] [Google Scholar]
  46. A. Vena, E. Perret, S. Tedjini, Chipless RFID tag using hybrid coding technique, IEEE Trans. Microw. Theor. Technol. 59, 3356 (2011) [CrossRef] [Google Scholar]
  47. A. Vena, E. Perret, S. Tedjini, A compact chipless RFID tag using polarization diversity for encoding and sensing, in: 2012 IEEE Int. Conf. RFID, 2012, pp. 191–197 [CrossRef] [Google Scholar]
  48. I. Balbin, N.C. Karmakar, Phase-encoded chipless RFID transponder for large scale low cost applications, IEEE Microw. Wirel. Comp. Lett. 19, 509 (2009) [CrossRef] [Google Scholar]
  49. S. Genovesi, F. Costa, A. Monorchio, G. Manara, Chipless RFID tag exploiting multifrequency delta-phase quantization encoding, IEEE Ant. Wirel. Propag. Lett. 15, 738 (2015) [CrossRef] [Google Scholar]
  50. C. Herrojo, J. Mata-Contreras, F. Paredes, F. Martín, Near-Field chipless RFID encoders with sequential bit reading and high data capacity, in: IEEE MTT-S Int. Microw. Symp. (IMS'17), Honolulu, Hawaii, 2017 [Google Scholar]
  51. C. Herrojo, J. Mata-Contreras, F. Paredes, F. Martín, Chipless RFID tags based on metamaterial concepts, in: The 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena (Metamaterials), 2017 [Google Scholar]
  52. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T.M. Grzegorczyk, J.A. Kong, Left-handed materials composed of only S-shaped resonators, Phys. Rev. E. 70, 1 (2004) [Google Scholar]
  53. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T.M. Grzegorczyk, J.A. Kong, Negative refraction of a combined double S-shaped metamaterial, Appl. Phys. Lett. 86, 151909 (2005) [CrossRef] [Google Scholar]
  54. H. Chen, L.-X. Ran, H.-F. Jiang Tao, X.-M. Zhang, K.-S. Cheng, T.M. Grzegorczyk, J.A. Kong, Magnetic properties of S-shaped split ring resonators, Prog. Electromagn. Res. 51, 231 (2005) [CrossRef] [Google Scholar]
  55. E. Shamonina, V.A. Kalinin, K.H. Ringhofer, L. Solymar, Magneto-inductive waveguide, Electron. Lett. 38, 371 (2002) [CrossRef] [Google Scholar]
  56. E. Shamonina, V.A. Kalinin, K.H. Ringhofer, L. Solymar, Magneto-inductive waves in one, two and three dimensions, J. Appl. Phys. 92, 6252 (2002) [CrossRef] [Google Scholar]
  57. M.C.K. Wiltshire, E. Shamonina, I.R. Young, L. Solymar, Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment, Electron. Lett. 39, 215 (2003) [CrossRef] [Google Scholar]
  58. E. Shamonina, L. Solymar, Properties of magnetically coupled metamaterial elements, J. Magn. Magn. Mat. 300, 38 (2006) [CrossRef] [Google Scholar]
  59. R.R.A. Syms, E. Shamonina, V. Kalinin, L. Solymar, A theory of metamaterials based on periodically loaded transmission lines: interaction between magnetoinductive and electromagnetic waves, J. Appl. Phys. 97, 064909 (2005) [CrossRef] [Google Scholar]
  60. M.J. Freire, R. Marqués, F. Medina, M.A.G. Laso, F. Martin, Planar magnetoinductive wave transducers: theory and applications, Appl. Phys. Lett. 85, 4439 (2004) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.