Open Access
Issue
EPJ Appl. Metamat.
Volume 4, 2017
Article Number 7
Number of page(s) 16
DOI https://doi.org/10.1051/epjam/2017006
Published online 11 October 2017
  1. S.R. Best, A discussion on small antennas operating with small finite ground planes, in: Proc. 2006 IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, iWAT2006, White Plains, NY, 2006, pp. 152–155 [CrossRef] [EDP Sciences] [Google Scholar]
  2. P.-S. Kildal, Fundamental directivity and efficiency limitations of single- and multi-port antennas, in: Proc. the Second European Conference on Antennas and Propagation, EuCAP 2007, IET Conference Publications, Edinburgh, UK, 2007, pp. 1–6 [Google Scholar]
  3. P.-S. Kildal, S.R. Best, Further investigations of fundamental directivity limitations of small antennas with and without ground planes, in: Proc. 2008 IEEE Antennas and Propagation Society International Symposium, IEEE, San Diego, CA, 2008, pp. 1–4. [Google Scholar]
  4. S.R. Best, D.L. Hanna, Design of a broadband dipole in close proximity to an EBG ground plane, IEEE Antennas Propag. Mag. 50(6), 52–64 (2008) [CrossRef] [Google Scholar]
  5. A.D. Yaghjian, T.H. O'Donnell, E.E. Altshuler, S.R. Best, Electrically small supergain end-fire arrays, Radio Sci. 43(RS3002), 1–13 (2008) [Google Scholar]
  6. S.R. Best, E.E. Altshuler, A.D. Yaghjian, J.M. McGinthy, T.H. O'Donnell, An impedance-matched 2-element superdirective array, IEEE Antennas Wirel. Propag. Lett. 7, 302–305 (2008) [Google Scholar]
  7. S. Lim, H. Ling, Design of electrically small Yagi antenna, Electron. Lett. 43(5), 3–4 (2007) [CrossRef] [Google Scholar]
  8. S. Lim, H. Ling, Design of a closely spaced, folded Yagi antenna, IEEE Antennas Wirel. Propag. Lett. 5, 302–305 (2006) [CrossRef] [Google Scholar]
  9. F. Yang, Y. Rahmat-Samii, Electromagnetic band gap structures in antenna engineering (Cambridge University Press, Cambridge, UK, 2009) [Google Scholar]
  10. R.F. Jimenez Broas, D.F. Sievenpiper, E. Yablonovitch, A high-impedance ground plane applied to a cellphone handset geometry, IEEE Trans. Microwave Theory Tech. 49(7), 1262–1265 (2001) [CrossRef] [Google Scholar]
  11. S. Clavijo, R.E. Diaz, W.E. McKinzie, Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas, IEEE Trans. Antennas Propag. 51(10), 2678–2690 (2003) [CrossRef] [Google Scholar]
  12. R. Coccioli, F.-R. Yang, K.-P. Ma, T. Itoh, Aperture-coupled patch antenna on UC-PBG substrate, IEEE Trans. Microwave Theory Tech. 47(11), 2123–2130 (1999) [CrossRef] [Google Scholar]
  13. A. Erentok, P. Luljak, R.W. Ziolkowski, Antenna performance near a volumetric metamaterial realization of an artificial magnetic conductor, IEEE Trans. Antennas Propag. 53(1), 160–172 (2005) [CrossRef] [Google Scholar]
  14. R.W. Ziolkowski, P. Jin, C.-C. Lin, Metamaterial-inspired engineering of antennas, Proc. IEEE 99(10), 1720–1731 (2011) [CrossRef] [Google Scholar]
  15. M.-C. Tang, R.W. Ziolkowski, Efficient, high directivity, large front-to-back-ratio, electrically small, near-field-resonant-parasitic antenna, IEEE Access 1(1), 16–28 (2013) [CrossRef] [Google Scholar]
  16. M.-C. Tang, R.W. Ziolkowski, S. Xiao, M. Li, A high-directivity, wideband, efficient, electrically small antenna system, IEEE Trans. Antennas Propag. 62(12), 6541–6547 (2014) [CrossRef] [Google Scholar]
  17. R.W. Ziolkowski, M.-C. Tang, N. Zhu, An efficient, broad bandwidth, high directivity, electrically small antenna, Microw. Opt. Technol. Lett. 55(6), 1430–1434 (2013) [CrossRef] [Google Scholar]
  18. M.-C. Tang, R.W. Ziolkowski, A compact, two-element array with ultra-high broadside directivity, IET Microw. Antennas Propag. 7(8), 663–671 (2013) [CrossRef] [Google Scholar]
  19. M.-C. Tang, R.W. Ziolkowski, Two-element Egyptian axe dipole arrays emphasising their wideband and end-fire radiation performance, IET Microw. Antennas Propag. 9(13), 1363–1370 (2015) [CrossRef] [Google Scholar]
  20. P. Jin, R.W. Ziolkowski, Metamaterial-inspired, electrically small Huygens sources, IEEE Antennas Wirel. Propag. Lett. 9, 501–505 (2010) [CrossRef] [Google Scholar]
  21. T. Niemi, P. Alitalo, A.O. Karilainen, S.A. Tretyakov, Electrically small Huygens source antenna for linear polarization, IET Microw. Antennas Propag. 6(7), 735–739 (2012) [CrossRef] [Google Scholar]
  22. R.W. Ziolkowski, Low profile, broadside radiating, electrically small Huygens source antennas, IEEE Access 3, 2644–2651 (2015) [CrossRef] [Google Scholar]
  23. M.-C. Tang, H. Wang, R.W. Ziolkowski, Design and testing of simple, electrically small, low-profile, Huygens source antennas with broadside radiation performance, IEEE Trans. Antennas Propag. 64(11), 4607–4617 (2016) [CrossRef] [Google Scholar]
  24. M.-C. Tang, T. Shi, R.W. Ziolkowski, Electrically small, broadside radiating Huygens source antenna augmented with internal non-Foster elements to increase its bandwidth, IEEE Antennas Wirel. Propag. Lett. 16, 712–715 (2016), DOI: 10.1109/LAWP.2016.2600525 [CrossRef] [Google Scholar]
  25. M.-C. Tang, B. Zhou, R.W. Ziolkowski, Low-profile, electrically small, Huygens source antenna with pattern-reconfigurability that covers the entire azimuthal plane, IEEE Trans. Antennas Propag. 65(3), 1063–1072 (2017) [CrossRef] [Google Scholar]
  26. ANSYS High Frequency Structure Simulator (HFSS), http://www.ansys.com/Products/Electronics/ANSYS-HFSS, 2016 [Google Scholar]
  27. G.A. Deschamps, Microstrip microwave antennas, in: Proc. Third Symposium on the USAF Antenna Research and Development Program, Robert Allerton Park, IL, 1953 [Google Scholar]
  28. Y.T. Lo, D. Soloman, W.F. Richards, Theory and experiment on microstrip antennas, in: Proc. 1978 Antenna Applications Symposium, Robert Allerton Park, IL, 1978 [Google Scholar]
  29. Y.T. Lo, D. Soloman, W.F. Richards, Theory and experiment on microstrip antennas, IEEE Trans. Antennas Propag. AP-27(3), 137–145 (1979) [Google Scholar]
  30. W.F. Richards, Y.T. Lo, D. Harrison, An improved theory for microstrip antennas and applications, IEEE Trans. Antennas Propag. AP-29(1), 38–46 (1981) [CrossRef] [Google Scholar]
  31. C.A. Balanis, Antenna theory, 3rd ed. (John Wiley & Sons, Hoboken, NJ, 2005) [Google Scholar]
  32. A. Erentok, R.W. Ziolkowski, Metamaterial-inspired efficient electrically-small antennas, IEEE Trans. Antennas Propag. 56(3), 691–707 (2008) [CrossRef] [Google Scholar]
  33. A.K. Bhattacharyya, Effects of finite ground plane on the radiation characteristics of a circular patch antenna, IEEE Trans. Antennas Propag. 38(2), 152–159 (1990) [CrossRef] [Google Scholar]
  34. S.I. Latif, L. Shafai, Pattern equalization of circular patch antennas using different substrate permittivities and ground plane sizes, IEEE Trans. Antennas Propag. 59(10), 3502–3511 (2011) [CrossRef] [Google Scholar]
  35. D. Sievenpiper, L. Zhang, R.F. Broas, N.G. Alexopolous, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Microw. Theory Techn. 47(11), 2059–2074 (1999) [CrossRef] [Google Scholar]
  36. R. Gonzalo, P. De Maagt, M. Sorolla, Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates, IEEE Microw. Theory Techn. 47(11), 2131–2138 (1999) [CrossRef] [Google Scholar]
  37. F. Yang, Y. Rahmat-Samii, Electromagnetic band gap structures in antenna engineering (Cambridge University Press, Cambridge, UK, 2009) [Google Scholar]
  38. M.G. Silveirinha, C.A. Fernandes, J.R. Costa, Electromagnetic characterization of textured surfaces formed by metallic pins, IEEE Trans. Antennas Propag. 56(2), 405–411 (2008) [CrossRef] [Google Scholar]
  39. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater. 11(5), 426–431 (2012) [CrossRef] [Google Scholar]
  40. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Planar photonics with metasurfaces, Science 339 (6125), 1232009 (2013) [CrossRef] [Google Scholar]
  41. L. La Spada, T.M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, Y. Hao, Surface wave cloak from graded refractive index nanocomposites, Sci. Rep. 6, 29363 (2016) [CrossRef] [Google Scholar]
  42. R.W. Ziolkowski, C.-C. Lin, J.A. Nielsen, M.H. Tanielian, C.L. Holloway, Design and experimental verification of a 3D magnetic EZ antenna at 300 MHz, IEEE Antennas Wirel. Propag. Lett. 8, 989–993 (2009) [CrossRef] [Google Scholar]
  43. C.-C. Lin, R.W. Ziolkowski, J.A. Nielsen, M.H. Tanielian, C.L. Holloway, An efficient, low profile, electrically small, three-dimensional, very high frequency magnetic EZ antenna, Appl. Phys. Lett. 96(10), 104102 (2010) [CrossRef] [Google Scholar]
  44. J. Church, J.-C.S. Chieh, L. Xu, J.D. Rockway, D. Arceo, UHF electrically small box cage loop antenna with an embedded non-Foster load, IEEE Antennas Wirel. Propag. Lett. 13, 1329–1332 (2014) [CrossRef] [Google Scholar]
  45. R.W. Ziolkowski, Propagation in and scattering from a matched metamaterial having a zero index of refraction, Phys. Rev. E 70, 046608 (2004) [CrossRef] [Google Scholar]
  46. I. Liberal, N. Engheta, Nero-zero refractive index photonics, Nat. Photon. 11(3), 149–158 (2017) [CrossRef] [Google Scholar]
  47. T.M. McManus, L. La Spada, Y. Hao, Isotropic and anisotropic surface wave cloaking techniques, J. Opt. 18(4), 044005 (2016) [CrossRef] [Google Scholar]
  48. R.T. Cutshall, R.W. Ziolkowski, Performance characteristics of planar and three-dimensional versions of a frequency-agile electrically small antenna, IEEE Antennas Propag. Mag. 56(6), 53–71 (2014) [CrossRef] [Google Scholar]
  49. C.C. Lin, R.W. Ziolkowski, J.A. Nielsen, M.H. Tanielian, C.L. Holloway, An efficient, low profile, electrically small, three-dimensional, very high frequency magnetic EZ antenna, Appl. Phys. Lett. 96(10), 104102 (2010) [CrossRef] [Google Scholar]
  50. Z. Li, Z. Du, M. Takahashi, K. Saito, K. Ito, Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals, IEEE Trans. Antennas Propag. 60(2), 473–481 (2012) [CrossRef] [Google Scholar]
  51. B.K. Lau, J.B. Andersen, Simple and efficient decoupling of compact arrays with parasitic scatterers, IEEE Trans. Antennas Propag. 60(2), 464–472 (2012) [CrossRef] [Google Scholar]
  52. M.-C. Tang, S. Xiao, T. Deng, B.-Z. Wang, Parasitic patch of the same dimensions enabled excellent performance of microstrip antenna array, Appl. Comput. Electromagn. Soc. J. 25(10), 862–866 (2010) [Google Scholar]
  53. F. Yang, Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications, IEEE Trans. Antennas Propag. 51(10), 2936–2946 (2003) [CrossRef] [Google Scholar]
  54. G. Expósito-Domínguez, J.-M. Fernández-Gonzalez, P. Padilla, M. Sierra-Castañer, Mutual coupling reduction using EBG in steering antennas, IEEE Antennas Wirel. Propag. Lett. 11, 1265–1268 (2012) [Google Scholar]
  55. S. Xiao, M.-C. Tang, Y.-Y. Bai, S. Gao, B.-Z. Wang, Mutual coupling suppression in microstrip array using defected ground structure, IET Microw. Antennas Propag. 5(2), 1488–1494 (2011) [CrossRef] [Google Scholar]
  56. M.-C. Tang, S. Xiao, T. Deng, B.-Z. Wang, Novel folded single split ring resonator and its application to eliminate scan blindness in infinite phased array, in: Proc. 2010 International Symposium on Signals, Systems and Electronics (ISSSE2010), Nanjing, PR China, 2010, pp. 1–4 [Google Scholar]
  57. M.-C. Tang, S. Xiao, B.-Z. Wang, J. Guan, T. Deng, Improved performance of a microstrip phased array using broadband and ultra-low-loss metamaterial slabs, IEEE Antennas Propag. Mag. 53(6), 31–41 (2011) [CrossRef] [Google Scholar]
  58. D.B.M. Trindade, C. Müller, M.C.F.D. Castro, F.C.C.D. Castro, Metamaterials applied to ESPAR antenna for mutual coupling reduction, IEEE Antennas Wirel. Propag. Lett. 14, 430–433 (2015) [CrossRef] [Google Scholar]
  59. Z. Qamar, U. Naeem, S.A. Khan, M. Chongcheawchamnan, M.F. Shafique, Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate, IEEE Trans. Antennas Propag. 64(5), 1653–1660 (2016) [CrossRef] [Google Scholar]
  60. R. Hafezifard, M. Naser-Moghadasi, J.R. Mohassel, R.A. Sadeghzadeh, Mutual coupling reduction for two closely spaced meander line antennas using metamaterial substrate, IEEE Antennas Wirel. Propag. Lett. 15, 40–43 (2016) [Google Scholar]
  61. B. Wu, H. Chen, J.A. Kong, T.M. Grzegorczyk, Surface wave suppression in antenna systems using magnetic metamaterial, J. Appl. Phys. 101, 112913(1)–112913(4) (2007) [Google Scholar]
  62. X.M. Yang, X.G. Liu, X.Y. Zhou, T.J. Cui, Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials, IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012) [CrossRef] [Google Scholar]
  63. P.J. Ferrer, J.M. González-Arbesú, J. Romeu, Decorrelation of two closely spaced antennas with a metamaterial AMC surface, Microw. Opt. Technol. Lett. 50(5), 1414–1417 (2008) [CrossRef] [Google Scholar]
  64. M. Imbert, P.J. Ferrer, J.M. González-Arbesú, J. Romeu, Assessment of the performance of a metamaterial spacer in a closely spaced multiple-antenna system, IEEE Antennas Wirel. Propag. Lett. 11, 720–723 (2012) [CrossRef] [Google Scholar]
  65. G. Zhai, Z.N. Chen, X. Qing, Enhanced isolation of a closely spaced four-element MIMO antenna system using metamaterial mushroom, IEEE Trans. Antennas Propag. 63(8), 3362–3370 (2015) [CrossRef] [Google Scholar]
  66. M.C. Tang, Z. Chen, H. Wang, M. Li, B. Luo, J. Wang, Z. Shi, R.W. Ziolkowski, Mutual coupling reduction using meta-structures for wideband, dual-polarized, high-density patch arrays, IEEE Trans. Antennas Propag. 65(8), 3986–3998 (2017) [CrossRef] [Google Scholar]
  67. A. Alù, N. Engheta, Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers, J. Appl. Phys. 97(9), 094310 (2015) [Google Scholar]
  68. J.A. Gordon R.W. Ziolkowski, CNP optical metamaterials, Opt. Express 16(9), 6692–6716 (2008) [CrossRef] [PubMed] [Google Scholar]
  69. C.R. Simovski, S.A. Tretyakov, Model of isotropic resonant magnetism in the visible range based on core-shell clusters, Phys. Rev. B 79(4), 045111 (2009) [CrossRef] [Google Scholar]
  70. R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, J.A. Sánchez-Gil, Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials, New J. Phys. 13(12), 123017 (2011) [CrossRef] [Google Scholar]
  71. R. Tarparelli, R. Iovine, L. La Spada, L. Vegni, Surface plasmon resonance of nanoshell particles with PMMA-graphene core, COMPEL 33(6), 2016–2029 (2014) [CrossRef] [Google Scholar]
  72. F. Monticone, A. Alù, Metamaterial, plasmonic and nanophotonic devices, Rep. Prog. Phys. 80(3), 036401 (2017) [CrossRef] [Google Scholar]
  73. R.W. Ziolkowski, A. Erentok, At and below the Chu limit: passive and active broad bandwidth metamaterial-based electrically small antennas, IET Microw. Antennas Propag. 1(1), 16–128 (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.