Open Access
Issue
EPJ Appl. Metamat.
Volume 4, 2017
Article Number 7
Number of page(s) 16
DOI https://doi.org/10.1051/epjam/2017006
Published online 11 October 2017
  1. S.R. Best, A discussion on small antennas operating with small finite ground planes, in: Proc. 2006 IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, iWAT2006, White Plains, NY, 2006, pp. 152–155 [CrossRef] [EDP Sciences]
  2. P.-S. Kildal, Fundamental directivity and efficiency limitations of single- and multi-port antennas, in: Proc. the Second European Conference on Antennas and Propagation, EuCAP 2007, IET Conference Publications, Edinburgh, UK, 2007, pp. 1–6
  3. P.-S. Kildal, S.R. Best, Further investigations of fundamental directivity limitations of small antennas with and without ground planes, in: Proc. 2008 IEEE Antennas and Propagation Society International Symposium, IEEE, San Diego, CA, 2008, pp. 1–4.
  4. S.R. Best, D.L. Hanna, Design of a broadband dipole in close proximity to an EBG ground plane, IEEE Antennas Propag. Mag. 50(6), 52–64 (2008) [CrossRef]
  5. A.D. Yaghjian, T.H. O'Donnell, E.E. Altshuler, S.R. Best, Electrically small supergain end-fire arrays, Radio Sci. 43(RS3002), 1–13 (2008)
  6. S.R. Best, E.E. Altshuler, A.D. Yaghjian, J.M. McGinthy, T.H. O'Donnell, An impedance-matched 2-element superdirective array, IEEE Antennas Wirel. Propag. Lett. 7, 302–305 (2008)
  7. S. Lim, H. Ling, Design of electrically small Yagi antenna, Electron. Lett. 43(5), 3–4 (2007) [CrossRef]
  8. S. Lim, H. Ling, Design of a closely spaced, folded Yagi antenna, IEEE Antennas Wirel. Propag. Lett. 5, 302–305 (2006) [CrossRef]
  9. F. Yang, Y. Rahmat-Samii, Electromagnetic band gap structures in antenna engineering (Cambridge University Press, Cambridge, UK, 2009)
  10. R.F. Jimenez Broas, D.F. Sievenpiper, E. Yablonovitch, A high-impedance ground plane applied to a cellphone handset geometry, IEEE Trans. Microwave Theory Tech. 49(7), 1262–1265 (2001) [CrossRef]
  11. S. Clavijo, R.E. Diaz, W.E. McKinzie, Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas, IEEE Trans. Antennas Propag. 51(10), 2678–2690 (2003) [CrossRef]
  12. R. Coccioli, F.-R. Yang, K.-P. Ma, T. Itoh, Aperture-coupled patch antenna on UC-PBG substrate, IEEE Trans. Microwave Theory Tech. 47(11), 2123–2130 (1999) [CrossRef]
  13. A. Erentok, P. Luljak, R.W. Ziolkowski, Antenna performance near a volumetric metamaterial realization of an artificial magnetic conductor, IEEE Trans. Antennas Propag. 53(1), 160–172 (2005) [CrossRef]
  14. R.W. Ziolkowski, P. Jin, C.-C. Lin, Metamaterial-inspired engineering of antennas, Proc. IEEE 99(10), 1720–1731 (2011) [CrossRef]
  15. M.-C. Tang, R.W. Ziolkowski, Efficient, high directivity, large front-to-back-ratio, electrically small, near-field-resonant-parasitic antenna, IEEE Access 1(1), 16–28 (2013) [CrossRef]
  16. M.-C. Tang, R.W. Ziolkowski, S. Xiao, M. Li, A high-directivity, wideband, efficient, electrically small antenna system, IEEE Trans. Antennas Propag. 62(12), 6541–6547 (2014) [CrossRef]
  17. R.W. Ziolkowski, M.-C. Tang, N. Zhu, An efficient, broad bandwidth, high directivity, electrically small antenna, Microw. Opt. Technol. Lett. 55(6), 1430–1434 (2013) [CrossRef]
  18. M.-C. Tang, R.W. Ziolkowski, A compact, two-element array with ultra-high broadside directivity, IET Microw. Antennas Propag. 7(8), 663–671 (2013) [CrossRef]
  19. M.-C. Tang, R.W. Ziolkowski, Two-element Egyptian axe dipole arrays emphasising their wideband and end-fire radiation performance, IET Microw. Antennas Propag. 9(13), 1363–1370 (2015) [CrossRef]
  20. P. Jin, R.W. Ziolkowski, Metamaterial-inspired, electrically small Huygens sources, IEEE Antennas Wirel. Propag. Lett. 9, 501–505 (2010) [CrossRef]
  21. T. Niemi, P. Alitalo, A.O. Karilainen, S.A. Tretyakov, Electrically small Huygens source antenna for linear polarization, IET Microw. Antennas Propag. 6(7), 735–739 (2012) [CrossRef]
  22. R.W. Ziolkowski, Low profile, broadside radiating, electrically small Huygens source antennas, IEEE Access 3, 2644–2651 (2015) [CrossRef]
  23. M.-C. Tang, H. Wang, R.W. Ziolkowski, Design and testing of simple, electrically small, low-profile, Huygens source antennas with broadside radiation performance, IEEE Trans. Antennas Propag. 64(11), 4607–4617 (2016) [CrossRef]
  24. M.-C. Tang, T. Shi, R.W. Ziolkowski, Electrically small, broadside radiating Huygens source antenna augmented with internal non-Foster elements to increase its bandwidth, IEEE Antennas Wirel. Propag. Lett. 16, 712–715 (2016), DOI: 10.1109/LAWP.2016.2600525 [CrossRef]
  25. M.-C. Tang, B. Zhou, R.W. Ziolkowski, Low-profile, electrically small, Huygens source antenna with pattern-reconfigurability that covers the entire azimuthal plane, IEEE Trans. Antennas Propag. 65(3), 1063–1072 (2017) [CrossRef]
  26. ANSYS High Frequency Structure Simulator (HFSS), http://www.ansys.com/Products/Electronics/ANSYS-HFSS, 2016
  27. G.A. Deschamps, Microstrip microwave antennas, in: Proc. Third Symposium on the USAF Antenna Research and Development Program, Robert Allerton Park, IL, 1953
  28. Y.T. Lo, D. Soloman, W.F. Richards, Theory and experiment on microstrip antennas, in: Proc. 1978 Antenna Applications Symposium, Robert Allerton Park, IL, 1978
  29. Y.T. Lo, D. Soloman, W.F. Richards, Theory and experiment on microstrip antennas, IEEE Trans. Antennas Propag. AP-27(3), 137–145 (1979)
  30. W.F. Richards, Y.T. Lo, D. Harrison, An improved theory for microstrip antennas and applications, IEEE Trans. Antennas Propag. AP-29(1), 38–46 (1981) [CrossRef]
  31. C.A. Balanis, Antenna theory, 3rd ed. (John Wiley & Sons, Hoboken, NJ, 2005)
  32. A. Erentok, R.W. Ziolkowski, Metamaterial-inspired efficient electrically-small antennas, IEEE Trans. Antennas Propag. 56(3), 691–707 (2008) [CrossRef]
  33. A.K. Bhattacharyya, Effects of finite ground plane on the radiation characteristics of a circular patch antenna, IEEE Trans. Antennas Propag. 38(2), 152–159 (1990) [CrossRef]
  34. S.I. Latif, L. Shafai, Pattern equalization of circular patch antennas using different substrate permittivities and ground plane sizes, IEEE Trans. Antennas Propag. 59(10), 3502–3511 (2011) [CrossRef]
  35. D. Sievenpiper, L. Zhang, R.F. Broas, N.G. Alexopolous, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Microw. Theory Techn. 47(11), 2059–2074 (1999) [CrossRef]
  36. R. Gonzalo, P. De Maagt, M. Sorolla, Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates, IEEE Microw. Theory Techn. 47(11), 2131–2138 (1999) [CrossRef]
  37. F. Yang, Y. Rahmat-Samii, Electromagnetic band gap structures in antenna engineering (Cambridge University Press, Cambridge, UK, 2009)
  38. M.G. Silveirinha, C.A. Fernandes, J.R. Costa, Electromagnetic characterization of textured surfaces formed by metallic pins, IEEE Trans. Antennas Propag. 56(2), 405–411 (2008) [CrossRef]
  39. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater. 11(5), 426–431 (2012) [CrossRef]
  40. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Planar photonics with metasurfaces, Science 339 (6125), 1232009 (2013) [CrossRef]
  41. L. La Spada, T.M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, Y. Hao, Surface wave cloak from graded refractive index nanocomposites, Sci. Rep. 6, 29363 (2016) [CrossRef]
  42. R.W. Ziolkowski, C.-C. Lin, J.A. Nielsen, M.H. Tanielian, C.L. Holloway, Design and experimental verification of a 3D magnetic EZ antenna at 300 MHz, IEEE Antennas Wirel. Propag. Lett. 8, 989–993 (2009) [CrossRef]
  43. C.-C. Lin, R.W. Ziolkowski, J.A. Nielsen, M.H. Tanielian, C.L. Holloway, An efficient, low profile, electrically small, three-dimensional, very high frequency magnetic EZ antenna, Appl. Phys. Lett. 96(10), 104102 (2010) [CrossRef]
  44. J. Church, J.-C.S. Chieh, L. Xu, J.D. Rockway, D. Arceo, UHF electrically small box cage loop antenna with an embedded non-Foster load, IEEE Antennas Wirel. Propag. Lett. 13, 1329–1332 (2014) [CrossRef]
  45. R.W. Ziolkowski, Propagation in and scattering from a matched metamaterial having a zero index of refraction, Phys. Rev. E 70, 046608 (2004) [CrossRef]
  46. I. Liberal, N. Engheta, Nero-zero refractive index photonics, Nat. Photon. 11(3), 149–158 (2017) [CrossRef]
  47. T.M. McManus, L. La Spada, Y. Hao, Isotropic and anisotropic surface wave cloaking techniques, J. Opt. 18(4), 044005 (2016) [CrossRef]
  48. R.T. Cutshall, R.W. Ziolkowski, Performance characteristics of planar and three-dimensional versions of a frequency-agile electrically small antenna, IEEE Antennas Propag. Mag. 56(6), 53–71 (2014) [CrossRef]
  49. C.C. Lin, R.W. Ziolkowski, J.A. Nielsen, M.H. Tanielian, C.L. Holloway, An efficient, low profile, electrically small, three-dimensional, very high frequency magnetic EZ antenna, Appl. Phys. Lett. 96(10), 104102 (2010) [CrossRef]
  50. Z. Li, Z. Du, M. Takahashi, K. Saito, K. Ito, Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals, IEEE Trans. Antennas Propag. 60(2), 473–481 (2012) [CrossRef]
  51. B.K. Lau, J.B. Andersen, Simple and efficient decoupling of compact arrays with parasitic scatterers, IEEE Trans. Antennas Propag. 60(2), 464–472 (2012) [CrossRef]
  52. M.-C. Tang, S. Xiao, T. Deng, B.-Z. Wang, Parasitic patch of the same dimensions enabled excellent performance of microstrip antenna array, Appl. Comput. Electromagn. Soc. J. 25(10), 862–866 (2010)
  53. F. Yang, Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications, IEEE Trans. Antennas Propag. 51(10), 2936–2946 (2003) [CrossRef]
  54. G. Expósito-Domínguez, J.-M. Fernández-Gonzalez, P. Padilla, M. Sierra-Castañer, Mutual coupling reduction using EBG in steering antennas, IEEE Antennas Wirel. Propag. Lett. 11, 1265–1268 (2012)
  55. S. Xiao, M.-C. Tang, Y.-Y. Bai, S. Gao, B.-Z. Wang, Mutual coupling suppression in microstrip array using defected ground structure, IET Microw. Antennas Propag. 5(2), 1488–1494 (2011) [CrossRef]
  56. M.-C. Tang, S. Xiao, T. Deng, B.-Z. Wang, Novel folded single split ring resonator and its application to eliminate scan blindness in infinite phased array, in: Proc. 2010 International Symposium on Signals, Systems and Electronics (ISSSE2010), Nanjing, PR China, 2010, pp. 1–4
  57. M.-C. Tang, S. Xiao, B.-Z. Wang, J. Guan, T. Deng, Improved performance of a microstrip phased array using broadband and ultra-low-loss metamaterial slabs, IEEE Antennas Propag. Mag. 53(6), 31–41 (2011) [CrossRef]
  58. D.B.M. Trindade, C. Müller, M.C.F.D. Castro, F.C.C.D. Castro, Metamaterials applied to ESPAR antenna for mutual coupling reduction, IEEE Antennas Wirel. Propag. Lett. 14, 430–433 (2015) [CrossRef]
  59. Z. Qamar, U. Naeem, S.A. Khan, M. Chongcheawchamnan, M.F. Shafique, Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate, IEEE Trans. Antennas Propag. 64(5), 1653–1660 (2016) [CrossRef]
  60. R. Hafezifard, M. Naser-Moghadasi, J.R. Mohassel, R.A. Sadeghzadeh, Mutual coupling reduction for two closely spaced meander line antennas using metamaterial substrate, IEEE Antennas Wirel. Propag. Lett. 15, 40–43 (2016)
  61. B. Wu, H. Chen, J.A. Kong, T.M. Grzegorczyk, Surface wave suppression in antenna systems using magnetic metamaterial, J. Appl. Phys. 101, 112913(1)–112913(4) (2007)
  62. X.M. Yang, X.G. Liu, X.Y. Zhou, T.J. Cui, Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials, IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012) [CrossRef]
  63. P.J. Ferrer, J.M. González-Arbesú, J. Romeu, Decorrelation of two closely spaced antennas with a metamaterial AMC surface, Microw. Opt. Technol. Lett. 50(5), 1414–1417 (2008) [CrossRef]
  64. M. Imbert, P.J. Ferrer, J.M. González-Arbesú, J. Romeu, Assessment of the performance of a metamaterial spacer in a closely spaced multiple-antenna system, IEEE Antennas Wirel. Propag. Lett. 11, 720–723 (2012) [CrossRef]
  65. G. Zhai, Z.N. Chen, X. Qing, Enhanced isolation of a closely spaced four-element MIMO antenna system using metamaterial mushroom, IEEE Trans. Antennas Propag. 63(8), 3362–3370 (2015) [CrossRef]
  66. M.C. Tang, Z. Chen, H. Wang, M. Li, B. Luo, J. Wang, Z. Shi, R.W. Ziolkowski, Mutual coupling reduction using meta-structures for wideband, dual-polarized, high-density patch arrays, IEEE Trans. Antennas Propag. 65(8), 3986–3998 (2017) [CrossRef]
  67. A. Alù, N. Engheta, Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers, J. Appl. Phys. 97(9), 094310 (2015)
  68. J.A. Gordon R.W. Ziolkowski, CNP optical metamaterials, Opt. Express 16(9), 6692–6716 (2008) [CrossRef] [PubMed]
  69. C.R. Simovski, S.A. Tretyakov, Model of isotropic resonant magnetism in the visible range based on core-shell clusters, Phys. Rev. B 79(4), 045111 (2009) [CrossRef]
  70. R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, J.A. Sánchez-Gil, Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials, New J. Phys. 13(12), 123017 (2011) [CrossRef]
  71. R. Tarparelli, R. Iovine, L. La Spada, L. Vegni, Surface plasmon resonance of nanoshell particles with PMMA-graphene core, COMPEL 33(6), 2016–2029 (2014) [CrossRef]
  72. F. Monticone, A. Alù, Metamaterial, plasmonic and nanophotonic devices, Rep. Prog. Phys. 80(3), 036401 (2017) [CrossRef]
  73. R.W. Ziolkowski, A. Erentok, At and below the Chu limit: passive and active broad bandwidth metamaterial-based electrically small antennas, IET Microw. Antennas Propag. 1(1), 16–128 (2007) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.