Issue
EPJ Applied Metamaterials
Volume 3, 2016
Metamaterial-by-Design: Theory, Methods, and Applications
Article Number 4
Number of page(s) 10
DOI https://doi.org/10.1051/epjam/2016008
Published online 26 July 2016
  1. F. Falcone, T. Lopetegi, M.A.G. Laso, J.D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, M. Sorolla, Babinet principle applied to the design of metasurfaces and metamaterials, Phys. Rev. Lett. 93 (2004) 197401. [CrossRef] [PubMed]
  2. E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, P. de Maagt, Coupling reduction between dipole antenna elements by using a planar meta-surface, IEEE Trans. Antennas Propag. 57 (2009) 383–394. [CrossRef]
  3. A. Dhouibi, S.N. Burokur, A. de Lustrac, A. Priou, Compact metamaterial-based substrate-integrated luneburg lens antenna, IEEE Antennas Wireless Propag. Lett. 11 (2012) 1504–1507. [CrossRef]
  4. A. Dhouibi, S.N. Burokur, A. de Lustrac, A. Priou, Low-profile substrate-integrated lens antenna using metamaterials, IEEE Antennas Wireless Propag. Lett. 12 (2013) 43–46. [CrossRef]
  5. S. Maci, G. Minatti, M. Casaletti, M. Bosiljevac, Metasurfing: addressing waves on impenetrable metasurfaces, IEEE Antennas Wireless Propag. Lett. 10 (2011) 1499–1502. [CrossRef]
  6. A.P. Feresidis, G. Goussetis, S. Wang, J.C. Vardaxoglou, Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas, IEEE Trans. Antennas Propag. 53 (2005) 209–215. [CrossRef]
  7. L. Zhou, H. Li, Y. Qin, Z. Wei, C.T. Chan, Directive emissions from subwavelength metamaterial-based cavities, Appl. Phys. Lett. 86 (2005) 101101. [CrossRef]
  8. A. Ourir, A. de Lustrac, J.-M. Lourtioz, All-metamaterial-based sub-wavelength cavities (/60) for ultrathin directive antennas, Appl. Phys. Lett. 88 (2006) 084103. [CrossRef]
  9. B. Gallinet, O.J.F. Martin, Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures, ACS Nano 7 (2013) 6978–6987. [CrossRef]
  10. M.F. Yanik, W. Suh, Z. Wang, S. Fan, Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency, Phys. Rev. Lett. 93 (2004) 233903. [CrossRef] [PubMed]
  11. Q. Xu, S. Sandhu, M.L. Povinelli, J. Shakya, S. Fan, M. Lipson, Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency, Phys. Rev. Lett. 96 (2006) 123901. [CrossRef]
  12. R.W. Boyd, D.J. Gauthier, Transparency on an optical chip, Nature 441 (2006) 701–702. [CrossRef]
  13. P. Chak, J.K.S. Poon, A. Yariv, Optical bright and dark states in side-coupled resonator structures, Opt. Lett. 32 (2007) 1785–1787. [CrossRef]
  14. H. Benisty, Dark modes, slow modes, and coupling in multimode systems, J. Opt. Soc. Am. B 26 (2009) 718–724. [CrossRef]
  15. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater. 9 (2010) 707–715. [CrossRef] [PubMed]
  16. B. Gallinet, O.J.F. Martin, Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances, ACS Nano 5 (2011) 8999–9008. [CrossRef] [PubMed]
  17. V.A. Fedotov, M. Rose, S.L. Prosvirnin, N. Papasimakis, N.I. Zheludev, Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry, Phys. Rev. Lett. 99 (2007) 147401. [CrossRef] [PubMed]
  18. P. Tassin, L. Zhang, T. Koschny, E.N. Economou, C.M. Soukoulis, Low-loss metamaterials based on classical electromagnetically induced transparency, Phys. Rev. Lett. 102 (2009) 053901. [CrossRef] [PubMed]
  19. R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, Coupling between a dark and a bright eigenmode in a terahertz metamaterial, Phys. Rev. B 79 (2009) 085111. [CrossRef]
  20. R. Singh, I.A.I. Al-Naib, Y. Yang, D.R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, W. Zhang, Observing metamaterial induced transparency in individual Fano resonators with broken symmetry, Appl. Phys. Lett. 99 (2011) 201107. [CrossRef]
  21. V. Tuz, D. Novitsky, P. Mladyonov, S. Prosvirnin, A. Novitsky, Nonlinear interaction of two trapped-mode resonances in a bilayer fish-scale metamaterial, J. Opt. Soc. Am. B 31 (2014) 2095–2103. [CrossRef]
  22. A. Christ, Y. Ekinci, H.H. Solak, N.A. Gippius, S.G. Tikhodeev, O.J.F. Martin, Controlling the Fano interference in a plasmonic lattice, Phys. Rev. B 76 (2007) 201405 (R). [CrossRef]
  23. A. Christ, O.J.F. Martin, Y. Ekinci, N.A. Gippius, S.G. Tikhodeev, Symmetry breaking in a plasmonic metamaterial at optical wavelength, Nano Lett. 8 (2008) 2171–2175. [CrossRef]
  24. C. Forestiere, L. Dal Negro, G. Miano, Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures, Phys. Rev. B 88 (2013) 155411. [CrossRef]
  25. A. Lovera, B. Gallinet, P. Nordlander, O.J.F. Martin, Mechanisms of Fano resonances in coupled plasmonic systems, ACS Nano 7 (2013) 4527. [CrossRef]
  26. B. Hopkins, A.N. Poddubny, A.E. Miroshnichenko, Y.S. Kivshar, Revisiting the physics of Fano resonances for nanoparticle oligomers, Phys. Rev. A 88 (2013) 053819. [CrossRef]
  27. ANSYS HFSS (High Frequency Structure Simulator), version 15, (2012).
  28. A. Ourir, S.N. Burokur, A. de Lustrac, Phase-varying metamaterial for compact steerable directive antennas, Electron. Lett. 43 (2007) 493–494. [CrossRef]
  29. A. Ourir, S.N. Burokur, R. Yahiaoui, A. de Lustrac, Directive metamaterial-based subwavelength resonant cavity antennas – applications for beam steering, Comptes Rendus Phys. 10 (2009) 414–422. [CrossRef]
  30. R. Guzman-Quiros, J.L. Gomez-Tornero, A.R. Weily, Y.J. Guo, Electronic full-space scanning with 1-D Fabry-Pérot LWA using electromagnetic band-gap, IEEE Antennas Wireless Propag. Lett. 11 (2012) 1426–1429. [CrossRef]
  31. R. Guzman-Quiros, J.L. Gomez-Tornero, A.R. Weily, Y.J. Guo, Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tunable high impedance surface, IEEE Trans. Antennas Propag. 60 (2012) 5046–5055. [CrossRef]
  32. A. Ghasemi, S.N. Burokur, A. Dhouibi, A. de Lustrac, High beam steering in Fabry-Pérot leaky-wave antennas, IEEE Antennas Wireless Propag. Lett. 12 (2013) 261–264. [CrossRef]
  33. A. Ghasemi, S.N. Burokur, A. Dhouibi, A. de Lustrac, Inductive-varying grid for highly beam-steerable cavity antennas, Electron. Lett. 49 (2013) 319–321. [CrossRef]
  34. W. Zhang, B. Gallinet, O.J.F. Martin, Symmetry and selection rules for localized surface plasmon resonances in nanostructures, Phys. Rev. B 81 (2010) 233407. [CrossRef]
  35. A. Dhouibi, S.N. Burokur, A. Lupu, A. de Lustrac, A. Priou, “Excitation of trapped modes from a metasurface composed of only Z-shaped meta-atoms, Appl. Phys. Lett. 103 (2013) 184103. [CrossRef]
  36. S.N. Burokur, A. Lupu, A. de Lustrac, Direct dark mode excitation by symmetry matching of a single-particle-based metasurface, Phys. Rev. B 91 (2015) 035104. [CrossRef]
  37. E. Bochkova, S.N. Burokur, A. de Lustrac, A. Lupu, Direct dark modes excitation in bi-layered enantiomeric atoms-based metasurface through symmetry matching, Opt. Lett. 41 (2016) 412–415. [CrossRef]
  38. R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, W. Zhang, Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber, J. Appl. Phys 118 (2015) 083103. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.