EPJ Applied Metamaterials
Volume 3, 2016
Metamaterial-by-Design: Theory, Methods, and Applications
Article Number 3
Number of page(s) 19
Published online 26 July 2016
  1. V.G. Veselago, The electrodynamics of substances with simultaneous negative values of ε and μ, Sov. Phys. Usp. 10 (1968) 509–514. [CrossRef] [Google Scholar]
  2. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292 (2001) 77–79. [CrossRef] [PubMed] [Google Scholar]
  3. S. Xi, H. Chen, T. Jiang, L. Ran, J. Huangfu, B.I. Wu, J.A. Kong, M. Chen, Experimental verification of reversed Cherenkov radiation in left-handed metamaterial, Phys. Rev. Lett. 103 (2009) 194801. [CrossRef] [Google Scholar]
  4. S.N. Galyamin, A.V. Tyukhtin, A. Kanareykin, P. Schoessow, Reversed Cherenkov-transition radiation by a charge crossing a left-handed medium boundary, Phys. Rev. Lett. 103 (2009) 194802. [CrossRef] [Google Scholar]
  5. A. Lakhtakia, Positive and negative Goos-Hanchen shifts and negative phase-velocity mediums, Int. J. Electron. Commun. 58 (2003) 229–231. [CrossRef] [Google Scholar]
  6. T.J. Cui, X.Q. Lin, Q. Cheng, H.F. Ma, X.M. Yang, Experiments on evanescent-wave amplification and transmission using metamaterial structures, Phys. Rev. B 73 (2006) 245119. [CrossRef] [Google Scholar]
  7. J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85 (2000) 3966–3969. [CrossRef] [PubMed] [Google Scholar]
  8. D.R. Smith, J.J. Mock, A.F. Starr, D. Schurig, Gradient index metamaterials, Phys. Rev. E 71 (2005) 036609. [CrossRef] [Google Scholar]
  9. M. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials, Phys. Rev. Lett. 97 (2006) 157403. [CrossRef] [PubMed] [Google Scholar]
  10. V.C. Nguyen, L. Chen, K. Halterman, Total transmission and total reflection by zero index metamaterials with defects, Phys. Rev. Lett. 105 (2010) 233908. [CrossRef] [PubMed] [Google Scholar]
  11. P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, J. Valentine, Realization of an all-dielectric zero-index optical metamateria, Nature Photonics 7 (2013) 791–795. [Google Scholar]
  12. C. Caloz, T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications, Wiley, New York, 2004. [Google Scholar]
  13. T. Hand, S. Cummer, Characterization of tunable metamaterial elements using MEMS switches, IEEE Antennas Wirel. Propag. Lett. 6 (2007) 401–404. [CrossRef] [Google Scholar]
  14. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic crystals: molding the flow of light, Princeton University Press, Princeton, 2011. [Google Scholar]
  15. Y. Rahmat-Samii, H. Mosallaei, Electromagnetic band-gap structures: classification, characterization, and applications, Antennas and Propagation, 2001. Eleventh International Conference on (IEE Conf. Publ. No. 480), Manchester, IET 2, 2001, pp. 560–564. [Google Scholar]
  16. B.A. Munk, Frequency selective surface: theory and design, John Wiley and Sons, New York, 2000. [Google Scholar]
  17. F. Yang, Z.L. Mei, T.Y. Jin, T.J. Cui, DC electric invisibility cloak, Phys. Rev. Lett. 109 (2012) 053902. [Google Scholar]
  18. J.M. Lukens, D.E. Leaird, A.M. Weiner, A temporal cloak at telecommunication data rate, Nature 498 (2013) 205–208. [CrossRef] [Google Scholar]
  19. R. Schittny, M. Kadic, T. Bückmann, M. Wegener, Invisibility cloaking in a diffusive light scattering medium, Science 345 (2014) 427–429. [CrossRef] [Google Scholar]
  20. H. Xu, X. Shi, F. Gao, H. Sun, B. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112 (2014) 054301. [Google Scholar]
  21. M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, X. Zhang, A carpet cloak for visible light, Nano Lett. 11 (2011) 2825–2828. [CrossRef] [Google Scholar]
  22. X. Chen, H.F. Ma, X.Y. Zou, W.X. Jiang, T.J. Cui, Three-dimensional broadband and highdirectivity lens antenna made of metamaterials, J. Appl. Phys. 110 (2011) 044904. [CrossRef] [Google Scholar]
  23. C. García-Meca, A. Martínez, U. Leonhardt, Engineering antenna radiation patterns via quasi-conformal mappings, Opt. Express 19 (2011) 23743–23750. [CrossRef] [Google Scholar]
  24. H.F. Ma, X. Chen, X.M. Yang, W.X. Jiang, T.J. Cui, Design of multibeam scanning antennas with high gains and low sidelobes using gradient-index metamaterials, J. Appl. Phys. 107 (2010) 014902. [CrossRef] [Google Scholar]
  25. H.F. Ma, T.J. Cui, Three-dimensional broadband and broad-angle transformation-optical lens, Nat. Commun. 1 (2010) 124. [CrossRef] [Google Scholar]
  26. F. Yang, Z.L. Mei, T.J. Cui, Design and experiment of perfect relay lens based on the Schwarz-Christoffel mapping, Appl. Phys. Lett. 104 (2014) 073510. [CrossRef] [Google Scholar]
  27. C. Lu, Z.L. Mei, Multi-functional lens based on conformal mapping, Opt. Express 23 (2015) 19901–19910. [CrossRef] [Google Scholar]
  28. N. Kundtz, D.R. Smith, Extreme-angle broadband metamaterial lens, Nat. Mater. 9 (2010) 129–132. [Google Scholar]
  29. Y. Lai, H.Y. Chen, D.Z. Han, J.J. Xiao, Z.-Q. Zhang, C.T. Chan, Illusion optics: the optical transformation of an object into another object, Phys. Rev. Lett. 102 (2009) 253902. [CrossRef] [PubMed] [Google Scholar]
  30. W.X. Jiang, T.J. Cui, Radar illusion via metamaterials, Phys. Rev. E 83 (2011) 026601. [CrossRef] [Google Scholar]
  31. Q. Ma, Z.L. Mei, S.K. Zhu, T.Y. Jin, T.J. Cui, Experiments on active cloaking and illusion for laplace equation, Phys. Rev. Lett. 111 (2013) 173901. [Google Scholar]
  32. B.S. Song, S. Noda, T. Asano, Photonic devices based on in-plane hetero photonic crystals, Science 300 (2003) 1537–1537. [CrossRef] [Google Scholar]
  33. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics, Nature Photonics 4 (2010) 611–622. [Google Scholar]
  34. H.T. Chen, W.J. Padilla, J.M. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices, Nature 444 (2006) 597–600. [CrossRef] [PubMed] [Google Scholar]
  35. H. Tao, E.A. Kadlec, A.C. Strikwerda, K. Fan, W.J. Padilla, R.D. Averitt, E.A. Shaner, X. Zhang, Microwave and terahertz wave sensing with metamaterials, Opt. Express 19 (2011) 21620–21626. [CrossRef] [Google Scholar]
  36. T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, C. Fumeaux, Terahertz reflectarray as a polarizing beam splitter, Opt. Express 22 (2014) 16148–16160. [CrossRef] [Google Scholar]
  37. T. Yang, H. Chen, X. Luo, H. Ma, Superscatterer: enhancement of scattering with complementary media, Opt. Express 16 (2008) 18545–18550. [CrossRef] [Google Scholar]
  38. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312 (2006) 1780–1782. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  39. W.X. Jiang, C.-W. Qiu, T.C. Han, S. Zhang, T.J. Cui, Creation of ghost illusions using wave dynamics in metamaterials, Adv. Funct. Mater. 23 (2013) 4028–4034. [CrossRef] [Google Scholar]
  40. R. Liu, C. Ji, J.J. Mock, J.Y. Chin, T.J. Cui, D.R. Smith, Broadband ground-plane cloak, Science 323 (2009) 366–369. [CrossRef] [Google Scholar]
  41. H.F. Ma, T.J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials, Nat. Commun. 1 (2010) 21. [Google Scholar]
  42. A. Alù, Mantle cloak: invisibility induced by a surface, Phys. Rev. B 80 (2009) 245115. [Google Scholar]
  43. J. Zhang, Z.L. Mei, W.R. Zhang, F. Yang, T.J. Cui, An ultrathin directional carpet cloak based on generalized Snell’s law, Appl. Phys. Lett. 103 (2013) 151115. [CrossRef] [Google Scholar]
  44. T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials, Light Science & Applications 3 (2014) e218. [Google Scholar]
  45. B.-I. Popa, S.A. Cummer, Cloaking with optimized homogeneous anisotropic layers, Phys. Rev. A 79 (2009) 023806. [CrossRef] [Google Scholar]
  46. A. Mirzaei, A.E. Miroshnichenko, I.V. Shadrivov, Y.S. Kivshar, Superscattering of light optimized by a genetic algorithm, Appl. Phys. Lett. 105 (2014) 011109. [CrossRef] [Google Scholar]
  47. R.-B. Hwang, H.-T. Huang, Scattering characteristics of cylindrical metamaterials, AIP Advances 6 (2016) 035107. [CrossRef] [Google Scholar]
  48. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314 (2006) 977–980. [CrossRef] [PubMed] [Google Scholar]
  49. C. Li, X.K. Meng, X. Liu, F. Li, G.Y. Fang, H.Y. Chen, C.T. Chan, Experimental realization of a circuitbased broadband illusion-optics analogue, Phys. Rev. Lett. 105 (2010) 233906. [CrossRef] [Google Scholar]
  50. W.X. Jiang, H.F. Ma, Q. Cheng, T.J. Cui, Illusion media: generating virtual objects using realizable metamaterials, Appl. Phys. Lett. 96 (2010) 121910. [CrossRef] [Google Scholar]
  51. M. Liu, Z.L. Mei, X. Ma, T.J. Cui, DC illusion and its experimental verification, Appl. Phys. Lett. 101 (2012) 051905. [CrossRef] [Google Scholar]
  52. G.D. Bai, Z. Zhang, F. Yang, Z.L. Mei, Magnification device for Laplace equation by using homogeneous and isotropic media with positive values, J. Phys. D: Appl. Phys. 48 (2015) 325104. [CrossRef] [Google Scholar]
  53. W.X. Jiang, T.J. Cui, X.M. Yang, H.F. Ma, Q. Cheng, Shrinking an arbitrary object as one desires using metamaterials, Appl. Phys. Lett. 98 (2011) 204101. [CrossRef] [Google Scholar]
  54. W.X. Jiang, T.J. Cui, Moving targets virtually via composite optical transformation, Opt. Express 18 (2010) 5161–5167. [CrossRef] [Google Scholar]
  55. J. Li, J.B. Pendry, Hiding under the carpet: a new strategy for cloaking, Phys. Rev. Lett. 101 (2008) 203901. [CrossRef] [PubMed] [Google Scholar]
  56. Y. Luo, J. Zhang, H. Chen, L. Ran, B.I. Wu, J.A. Kong, A rigorous analysis of plane-transformed invisibility cloaks, IEEE Trans. Antennas Propag. 57 (2009) 3926–3933. [Google Scholar]
  57. F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M.C.K. Wiltshire, D. Caplin, L.F. Cohen, J.B. Pendry, A dc magnetic metamaterial, Nature Mater. 7 (2008) 295. [Google Scholar]
  58. C. Navau, D.X. Chen, A. Sanchez, N. Del-Valle, Magnetic properties of a dc metamaterial consisting of parallel square superconducting thin plates, Appl. Phys. Lett. 94 (2009) 242501. [CrossRef] [Google Scholar]
  59. F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat- Camps, A. Sanchez, Experimental realization of a magnetic cloak, Science 335 (2012) 1466. [CrossRef] [Google Scholar]
  60. S. Narayana, Y. Sato, DC magnetic cloak, Adv. Mater. 24 (2012) 71. [Google Scholar]
  61. L. Zeng, Y. Zhao, Z. Zhao, H. Li, Electret electrostatic cloak, Physica B: Condens. Matter 462 (2015) 70–75. [CrossRef] [Google Scholar]
  62. C. Lan, Y. Yang, Z. Geng, B. Li, J. Zhou, Electrostatic field invisibility cloak, Sci. Rep. 5 (2015). [Google Scholar]
  63. T.C. Han, X. Bai, D.L. Gao, J.T.L. Thong, B.W. Li, C.-W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112 (2014) 054302. [Google Scholar]
  64. T.C. Han, X. Bai, J.T.L. Thong, B. Li, C.-W. Qiu, Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials, Adv. Mater. 26 (2014) 1731. [CrossRef] [PubMed] [Google Scholar]
  65. T.H. Chen, F. Yang, Z.L. Mei, A simple and flexible thermal illusion device and its experimental verification, Phys. Status Solidi A 212 (2015) 1746–1750. [CrossRef] [Google Scholar]
  66. F. Sun, S. He, Transformation magneto-statics and illusions for magnets, Sci. Rep. 4 (2014). [Google Scholar]
  67. S. Zhang, C. Xia, N. Fang, Broadband acoustic cloak for ultrasound waves, Phys. Rev. Lett. 106 (2011) 024301. [Google Scholar]
  68. S.A. Cummer, B.I. Popa, D. Schurig, D.R. Smith, J.B. Pendry, M. Rahm, A. Starr, Scattering theory derivation of a 3D acoustic cloaking shell, Phys. Rev. Lett. 100 (2008) 024301. [Google Scholar]
  69. H. Chen, C.T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials, Appl. Phys. Lett. 91 (2007) 183518. [Google Scholar]
  70. N.F. Yu, G. Patrice, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334 (2011) 333–337. [CrossRef] [PubMed] [Google Scholar]
  71. Y. Zhao, A. Alù, Manipulating light polarization with ultrathin plasmonic metasurfaces, Phys. Rev. B 84 (2011) 205428. [CrossRef] [Google Scholar]
  72. P.Y. Chen, A. Alù, Mantle cloaking using thin patterned metasurfaces, Phys. Rev. B 84 (2011) 205110. [CrossRef] [Google Scholar]
  73. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Planar photonics with metasurfaces, Science 339 (2013) 1232009. [Google Scholar]
  74. N. Yu, F. Capasso, Flat optics with designer metasurfaces, Nat. Mater. 13 (2014) 139–150. [CrossRef] [PubMed] [Google Scholar]
  75. D. Lin, P. Fan, E. Hasman, M.L. Brongersma, Dielectric gradient metasurface optical elements, Science 345 (2014) 298–302. [CrossRef] [Google Scholar]
  76. G. Mie, Pioneering mathematical description of scattering by spheres, Ann. Phys. 25 (1908) 337. [Google Scholar]
  77. Y.R. Padooru, A.B. Yakovlev, P.Y. Chen, A. Alù, Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays, J. Appl. Phys. 112 (2012) 034907. [CrossRef] [Google Scholar]
  78. B. Zhang, Y. Luo, X. Liu, G. Barbastathis, Macroscopic invisibility cloak for visible light, Phys. Rev. Lett. 106 (2011) 033901. [CrossRef] [Google Scholar]
  79. N.M. Estakhri, A. Alù, Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces, IEEE Antennas Wirel. Propag. Lett. 13 (2014) 1775–1778. [Google Scholar]
  80. L.Y. Hsu, T. Lepetit, B. Kanté, Extremely thin dielectric metasurface for carpet cloaking, Progress Electromagn. Res. 152 (2015). [Google Scholar]
  81. X. Ni, Z.J. Wong, M. Mrejen, Y. Wang, X. Zhang, An ultrathin invisibility skin cloak for visible light, Science 349 (2015) 1310–1314. [CrossRef] [Google Scholar]
  82. D.S. Weile, E. Michielssen, Genetic algorithm optimization applied to electromagnetics: A review, IEEE Trans. Antennas Propag. 45 (1997) 343–353. [CrossRef] [Google Scholar]
  83. X. Wang, F. Chen, E. Semouchknika, Spherical cloaking using multilayer shells of ordinary dielectrics, AIP Advances 3 (2013) 112111. [CrossRef] [Google Scholar]
  84. X. Wang, E. Semouchkina, A route for efficient non-resonance cloaking by using multilayer dielectric coating, Appl. Phys. Lett. 102 (2013) 113506. [CrossRef] [Google Scholar]
  85. Z. Yu, Y. Feng, X. Xu, J. Zhao, T. Jiang, Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials, J. Phys. D: Appl. Phys. 44 (2011) 185102. [CrossRef] [Google Scholar]
  86. S. Xu, X. Cheng, S. Xi, R. Zhang, H.O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, H. Chen, Experimental demonstration of a free space cylindrical cloak without superluminal propagation, Phys. Rev. Lett. 109 (2012) 223903. [Google Scholar]
  87. S. Liu, H.X. Xu, H.C. Zhang, T.J. Cui, Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface, Opt. Express 22 (2014) 13403. [CrossRef] [Google Scholar]
  88. F.G. Vasquez, G.W. Milton, D. Onofrei, Broadband exterior cloaking, Opt. Express 17 (2009) 14800. [CrossRef] [Google Scholar]
  89. M. Selvanayagam, G.V. Eleftheriades, Experimental demonstration of active electromagnetic cloaking, Phys. Rev. X 3 (2013) 041011. [Google Scholar]
  90. J.C. Howell, J.B. Howell, J.S. Choi, Amplitude-only, passive, broadband, optical spatial cloaking of very large objects, Appl. Opt. 53 (2014) 1958. [CrossRef] [Google Scholar]
  91. J.S. Choi, J.C. Howell, Paraxial ray optics cloaking, Opt. Express 22 (2014) 29465. [CrossRef] [Google Scholar]
  92. T. Tyc, S. Oxburgh, E.N. Cowie, G.J. Chaplain, G. Macauley, C.D. White, J. Courtial, Omnidirectional transformation-optics cloak made from lenses and glenses, JOSA A 33 (2016) 1032. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.