Issue
EPJ Applied Metamaterials
Volume 2, 2015
Advanced Metamaterials in Microwaves, Optics and Mechanics
Article Number 15
Number of page(s) 12
DOI https://doi.org/10.1051/epjam/2015019
Published online 08 February 2016
  1. C.M. Soukoulis, M. Kafesaki, E.N. Economou, Negative index materials: new frontiers in optics, Adv. Mat. 18 (2006) 1941–1952. [CrossRef] [Google Scholar]
  2. Y. Liu, X. Zhang, Metamaterials: a new frontier of science and technology, Chem. Soc. Rev. 40 (2011) 2494–2507. [Google Scholar]
  3. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10 (1968) 509–514. [CrossRef] [Google Scholar]
  4. N. Engheta, Pursuing near-zero response, Science 340 (2013) 286–287. [CrossRef] [Google Scholar]
  5. M.G. Silveirinha, N. Engheta, Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using epsilon near-zero metamaterials, Phys. Rev. B 76 (2007) 245109. [CrossRef] [Google Scholar]
  6. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials, Nat. Photonics 7 (2013) 10. [Google Scholar]
  7. N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices, Nat. Mater. 11 (2012) 917–924. [CrossRef] [Google Scholar]
  8. A. Sihvola, Metamaterials in electromagnetics, Metamaterials 1 (2007) 2–11. [CrossRef] [Google Scholar]
  9. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G.V. Freymann, S. Linden, M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer, Science 325 (2009) 1513–1515. [CrossRef] [PubMed] [Google Scholar]
  10. J.J.D.D. Jong, L.N. Lucas, R.M. Kellogg, J.H.V. Esch, B.L. Feringa, Reversible optical transcription of supramolecular chirality into molecular chirality, Science 304 (2004) 278–281. [CrossRef] [Google Scholar]
  11. M. Wegener, S. Linden, Giving light yet another new twist, Physics 2 (2009) 3–6. [CrossRef] [Google Scholar]
  12. S. Zhang, J. Zhou, Y. Park, J. Rho, R. Singh, S. Nam, A.K. Azad, H. Chen, X. Yin, A.J. Taylor, X. Zhang, Photoinduced handedness switching in terahertz chiral metamolecules, Nat. Commun. 3 (2012) 3–6. [Google Scholar]
  13. J. Zhou, D.R. Chowdhury, R. Zhao, A.K. Azad, H. Chen, C.M. Soukoulis, A.J. Taylor, J.F. O’Hara, Terahertz chiral metamaterials with giant and dynamically tunable optical activity, Phys. Rev. B 86 (2012) 035448. [CrossRef] [Google Scholar]
  14. B. Wang, J. Zhou, T. Koschny, C.M. Soukoulis, Nonplanar chiral metamaterials with negative index, Appl. Phys. Lett. 94 (2009) 151112. [CrossRef] [Google Scholar]
  15. Z. Li, M. Mutlu, E. Ozbay, From optical activity and negative refractive index to asymmetric transmission, J. Opt. 15 (2013) 023001. [CrossRef] [Google Scholar]
  16. B.N. Wang, J.F. Zhou, T. Koschny, M. Kafesaki, C.M. Soukoulis, Chiral metamaterials: simulations and experiments, J. Opt. A: Pure Appl. Opt. 11 (2009) 114003. [CrossRef] [Google Scholar]
  17. K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, S. Shinkai, Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation, J. Am. Chem. Soc. 116 (1994) 6664–6676. [CrossRef] [Google Scholar]
  18. N. Koumura, R.W.J. Zijlstra, R.A.V. Delden, N. Harada, B.L. Feringa, Light-driven monodirectional molecular rotor, Nature 401 (1999) 152–155. [CrossRef] [PubMed] [Google Scholar]
  19. R. Zhao, J. Zhou, T. Koschny, E.N. Economou, C.M. Soukoulis, Repulsive Casimir force in chiral metamaterials, Phys. Rev. Lett. 103 (2009) 103602. [CrossRef] [PubMed] [Google Scholar]
  20. R. Zhao, T. Koschny, E.N. Economou, C.M. Soukoulis, Repulsive Casimir forces with finite-thickness slabs, Phys. Rev. B 83 (2011) 075108. [CrossRef] [Google Scholar]
  21. G. Kenanakis, C.M. Soukoulis, E.N. Economou, Casimir forces of metallic microstructures into cavities, Phys. Rev. B 92 (2015) 075430. [CrossRef] [Google Scholar]
  22. J.B. Pendry, A chiral route to negative refraction, Science 306 (2004) 1353–1355. [CrossRef] [PubMed] [Google Scholar]
  23. S. Tretyakov, A. Sihvola, L. Jylha, Bi-layer cross chiral structure with strong optical activity and negative index, Photonics Nanostruct. Fundam. Appl. 3 (2005) 107–115. [CrossRef] [Google Scholar]
  24. G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C.M. Soukoulis, E.N. Economou, Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs, Opt. Mater. Express 2 (2012) 1702–1712. [CrossRef] [Google Scholar]
  25. C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials, Nat. Photonics 5 (2011) 523–530. [Google Scholar]
  26. Y. Huang, Z. Yao, Q. Wang, F. Hu, X. Xu, Coupling Tai Chi chiral metamaterials with strong optical activity in terahertz region, Plasmonics 10 (2015) 1005–1011. [CrossRef] [Google Scholar]
  27. E.V. Naumova, V.Y. Prinz, S.V. Golod, V.A. Seleznev, R.A. Soots, V.V. Kubarev, Manufacturing chiral electromagnetic metamaterials by directional rolling of strained heterofilms, J. Opt. A: Pure Appl. Opt. 11 (2009) 074010. [CrossRef] [Google Scholar]
  28. N. Wongkasem, A. Akyurtlu, K.A. Marx, D. Qi, L. Jin, W.D. Goodhue, Development of chiral negative refractive index metamaterials for the terahertz frequency regime, IEEE Trans. Antennas Propag. 55 (2007) 3052–3062. [CrossRef] [Google Scholar]
  29. E. Plum, V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev, Y. Chen, Giant optical gyrotropy due to electromagnetic coupling, Appl. Phys. Lett. 90 (2007) 223113. [CrossRef] [Google Scholar]
  30. A. Sonsilphong, P. Gutruf, W. Withayachumnankul, D. Abbott, M. Bhaskaran, S. Sriram, N. Wongkasem, Flexible bi-layer terahertz chiral metamaterials, J. Opt. 17 (2015) 085101. [CrossRef] [Google Scholar]
  31. M. Kafesaki, N.H. Shen, S. Tzortzakis, C.M. Soukoulis, Optically switchable and tunable terahertz metamaterials through photoconductivity, J. Opt. 14 (2012) 114008. [CrossRef] [Google Scholar]
  32. G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C.M. Soukoulis, E.N. Economou, Optically controllable THz chiral metamaterials, Opt. Express 22 (2014) 12149–12159. [CrossRef] [Google Scholar]
  33. N.H. Shen, M. Massaouti, M. Gokkavas, J.M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C.M. Soukoulis, Optically implemented broadband blueshift switch in the terahertz regime, Phys. Rev. Lett. 106 (2011) 037403. [CrossRef] [PubMed] [Google Scholar]
  34. G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C.M. Soukoulis, E.N. Economou, Three-dimensional infrared metamaterial with asymmetric transmission, ACS Photonics 2 (2015) 287–294. [CrossRef] [Google Scholar]
  35. K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, M. Farsari, 3D conducting nanostructures fabricated using direct laser writing, Opt. Mater. Express 1 (2011) 586–597. [CrossRef] [Google Scholar]
  36. N. Vasilantonakis, K. Terzaki, I. Sakellari, V. Purlys, D. Gray, C.M. Soukoulis, M. Vamvakaki, M. Kafesaki, M. Farsari, Three-dimensional metallic photonic crystals with optical bandgaps, Adv. Mater. 24 (2012) 1101–1105. [CrossRef] [Google Scholar]
  37. M. Farsari, B.N. Chichkov, Two-photon fabrication, Nature Photon. 3 (2009) 450–452. [CrossRef] [Google Scholar]
  38. M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis, Ultrafast laser nanostructuring of photopolymers: a decade of advances, Phys. Rep. 2013 (2013) 1–31. [CrossRef] [Google Scholar]
  39. N. Liu, H. Giessen, Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling, Opt. Express 16 (2008) 21233–21238. [CrossRef] [Google Scholar]
  40. R. Zhao, T. Koschny, E.N. Economou, C.M. Soukoulis, Comparison of chiral metamaterial designs for repulsive Casimir force, Phys. Rev. B 81 (2010) 235126. [CrossRef] [Google Scholar]
  41. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.B. Alici, E. Colak, H. Caglayan, E. Ozbay, C.M. Soukoulis, Chiral metamaterials with negative refractive index based on four “U” split ring resonators, Appl. Phys. Lett. 97 (2010) 081901. [CrossRef] [Google Scholar]
  42. W.-H. Sun, Y.-J. Bao, M. Wang, R.-W. Peng, C. Sun, X. Lu, J. Shao, Z.-F. Li, N.-B. Ming, Construction of a chiral metamaterial with a U-shaped resonator assembly, Phys. Rev. B 81 (2010) 075119. [CrossRef] [Google Scholar]
  43. M. Decker, R. Zhao, C.M. Soukoulis, S. Linden, M. Wegener, Twisted split-ring-resonator photonic metamaterial with huge optical activity, Opt. Lett. 35 (2010) 1593–1595. [CrossRef] [Google Scholar]
  44. Y.-P. Jia, Y.-L. Zhang, X.-Z. Dong, M.-L. Zheng, Z.-S. Zhao, X.-M. Duan, Tunable dual-band infrared chiral metamaterials based on double-layered asymmetric U-shape split ring resonators, Physica E 74 (2015) 659–664. [CrossRef] [Google Scholar]
  45. R. Zhao, L. Zhang, J. Zhou, T. Koschny, C.M. Soukoulis, Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index, Phys. Rev. B 83 (2011) 035105. [CrossRef] [Google Scholar]
  46. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C.M. Soukoulis, Negative refractive index due to chirality, Phys. Rev. B 79 (2009) 121104(R). [CrossRef] [Google Scholar]
  47. M. Decker, M. Ruther, C.E. Kriegler, J. Zhou, C.M. Soukoulis, S. Linden, M. Wegener, Strong optical activity from twisted-cross photonic metamaterials, Opt. Lett. 34 (2009) 2501–2503. [CrossRef] [Google Scholar]
  48. C. Menzel, C. Rockstuhl, F. Lederer, Advanced Jones calculus for the classification of periodic metamaterials, Phys. Rev. A 82 (2010) 053811. [CrossRef] [Google Scholar]
  49. J. Gu, R. Singh, A.K. Azad, J. Han, A.J. Taylor, J.F. O’Hara, W. Zhang, An active hybrid plasmonic metamaterial, Opt. Mater. Express 2 (2012) 31–37. [CrossRef] [Google Scholar]
  50. H.T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Experimental demonstration of frequency-agile terahertz metamaterials, Nat. Photonics 2 (2008) 295–298. [CrossRef] [Google Scholar]
  51. M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C.M. Soukoulis, E.N. Economou, Left-handed metamaterials: the fishnet structure and its variations, Phys. Rev. B 75 (2007) 235114. [CrossRef] [Google Scholar]
  52. A.M. Mahmoud, N. Engheta, Wave-matter interactions in epsilon-and-mu-near-zero structures, Nature Commun. 5 (2014) 5638. [CrossRef] [Google Scholar]
  53. V.A. Fedotov, P.L. Mladyonov, S.L. Prosvirnin, A.V. Rogacheva, Y. Chen, N.I. Zheludev, Asymmetric propagation of electromagnetic waves through a planar chiral structure, Phys. Rev. Lett. 97 (2006) 167401. [CrossRef] [Google Scholar]
  54. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, F. Lederer, Asymmetric transmission of linearly polarized light at optical metamaterials, Phys. Rev. Lett. 104 (2010) 253902. [CrossRef] [Google Scholar]
  55. A.S. Schwanecke, V.A. Fedotov, V.V. Khardikov, S.L. Prosvirnin, Y. Chen, N.I. Zheludev, Nanostructured metal film with asymmetric optical transmission, Nano Lett. 8 (2008) 2940–2943. [CrossRef] [PubMed] [Google Scholar]
  56. M. Mutlu, A.E. Akosman, A.E. Serebryannikov, E. Ozbay, Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial, Opt. Express 19 (2011) 14290–14299. [CrossRef] [Google Scholar]
  57. M. Kang, J. Chen, H.-X. Cui, Y. Li, H.-T. Wang, Asymmetric transmission for linearly polarized electromagnetic radiation, Opt. Express 19 (2011) 8347–8356. [CrossRef] [Google Scholar]
  58. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Low frequency plasmons in thin wire structures, J. Phys.: Condens. Matter 10 (1998) 4785–4809. [Google Scholar]
  59. J. Pendry, A. Holden, D. Robbins, W. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech. 47 (1999) 2075–2084. [Google Scholar]
  60. Z. Li, M. Mutlu, E. Ozbay, Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials, J. Phys. D: Appl. Phys. 47 (2014) 075107. [CrossRef] [Google Scholar]
  61. C.H. Papas, Theory of electromagnetic wave propagation, McGraw-Hill, New York, 1965. [Google Scholar]
  62. S. Bassiri, C.H. Papas, N. Engheta, Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab, J. Opt. Soc. Am. A 5 (1988) 1450–1459. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.