Issue
EPJ Applied Metamaterials
Volume 2, 2015
Advanced Metamaterials in Microwaves, Optics and Mechanics
Article Number 17
Number of page(s) 8
DOI https://doi.org/10.1051/epjam/2016001
Published online 26 February 2016
  1. R. Lakes, Foam structures with a negative Poisson’s ratio, Science 235 (1987) 1038–1040. [CrossRef] [PubMed] [Google Scholar]
  2. R. Shahar, P. Zaslansky, M. Barak, A.A. Friesem, J.D. Currey, S. Weiner, Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry, J. Biomech 40 (2007) 252–264. [CrossRef] [Google Scholar]
  3. M. Kadic, T. Bückmann, R. Schittny, M. Wegener, Metamaterials beyond electromagnetism, Rep. Prog. Phys. 76 (2013) 126501. [Google Scholar]
  4. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, M. Wegener, Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography, Adv. Mater. 24 (2012) 2710. [CrossRef] [Google Scholar]
  5. S. Brûlé, E. Javelaud, S. Enoch, S. Guenneau, Experiments on seismic metamaterials: molding surface waves, Phys. Rev. Lett. 112 (2014) 133901. [CrossRef] [Google Scholar]
  6. S. Benchabane, O. Gaiffe, G. Ulliac, R. Salut, Y. Achaoui, V. Laude, Observation of surface-guided waves in holey hypersonic phononic crystal, Appl. Phys. Lett. 98 (2011) 171908. [CrossRef] [Google Scholar]
  7. Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Locally resonant sonic materials, Science 289 (2000) 1734. [CrossRef] [PubMed] [Google Scholar]
  8. J. Li, C.T. Chan, Double-negative acoustic metamaterials, Phys. Rev. E 70 (2004) 055602. [CrossRef] [Google Scholar]
  9. A.B. Movchan, S. Guenneau, Split-ring resonators and localized modes, Phys. Rev. B 70 (2004) 125116. [CrossRef] [Google Scholar]
  10. A. Ávila, G. Griso, B. Miara, Bandes phoniques interdites en élasticité linéarisée, C.R. Acad. Sci. Paris: Ser. I 340 (2005) 933–938. [CrossRef] [Google Scholar]
  11. Z. Liu, C.T. Chan, P. Sheng, Analytic model of phononic crystals with local resonance, Phys. Rev. B 71 (2005) 014103. [CrossRef] [Google Scholar]
  12. N. Fang, D.J. Xi, J.Y. Xu, M. Ambrati, W. Sprituravanich, C. Sun, X. Zhang, Ultrasonic metamaterials with negative modulus, Nat. Mater. 5 (2006) 452. [CrossRef] [PubMed] [Google Scholar]
  13. G.W. Milton, J.R. Willis, On modifications of Newton’s second law and linear continuum elastodynamics, Proc. R. Soc. A 463 (2007) 855–880. [CrossRef] [Google Scholar]
  14. A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, B. Aoubiza, Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface, Phys. Rev. B 81 (2010) 214303. [CrossRef] [Google Scholar]
  15. Y. Achaoui, V. Laude, S. Benchabane, A. Khelif, Local resonances in phononic crystals and in random arrangements of pillars on a surface, J. Appl. Phys. 114 (2013) 104503. [Google Scholar]
  16. A. Colombi, P. Roux, M. Rupin, Sub-wavelength energy trapping of elastic waves in a meta-material, J. Acoust. Soc. Am. 136 (2014) EL192–EL196. [CrossRef] [Google Scholar]
  17. V.G. Veselago, The electrodnamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10 (1968) 509–514. [CrossRef] [Google Scholar]
  18. J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85 (2000) 3966–3969. [CrossRef] [PubMed] [Google Scholar]
  19. R.A. Shelby, D.R. Smith, S. Shultz, Experimental verification of a negative index of refraction, Science 292 (2001) 77–79. [CrossRef] [PubMed] [Google Scholar]
  20. S. Yang, J.H. Page, L. Zhengyou, M.L. Cowan, C.T. Chan, P. Sheng, Focusing of sound in a 3D phononic crystal, Phys. Rev. Lett. 93 (2004) 024301. [CrossRef] [PubMed] [Google Scholar]
  21. M. Dubois, E. Bossy, S. Enoch, S. Guenneau, G. Lerosey, P. Sebbah, Time-driven super-oscillations with negative refraction, Phys. Rev. Lett. 114 (2013) 013902. [CrossRef] [Google Scholar]
  22. S. Brulé, S. Enoch, S. Guenneau, Flat seismic lens, arXiv:1602.04492, 2016 (http://arxiv.org/abs/1602.04492). [Google Scholar]
  23. A. Colombi, P. Roux, S. Guenneau, P. Gueguen, R.V. Craster, Scientific Rep. 6 (2016) 19238, DOI: 10.1038/srep19238 [Google Scholar]
  24. S. Brulé, E. Javelaud, M. Marchand, Chimneys health monitoring during a nearby heavy dynamic compaction site, in Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2012, 4–6 July 2012, Bordeaux, France, Tome II, pp, 919–926, 2012. [Google Scholar]
  25. T. Gmur, Dynamique des structures, analyse modale numérique, Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 2008. [Google Scholar]
  26. S.H. Kim, M.P. Das, Seismic waveguide of metamaterials, Mod. Phys. Lett. B 26 (2012) 1250105. [CrossRef] [Google Scholar]
  27. Z. Shi, Z. Cheng, H. Xiang, Seismic isolation foundations with effective attenuation zones, Soil Dyn. Earthquake Eng. 57 (2014) 143–151. [CrossRef] [Google Scholar]
  28. S. Krodel, N. Thome, C. Daraio, Wide band-gap seismic metastructures, Ex. Mech. Letters 4 (2015), 111–117, DOI: 10.1016/j.eml.2015.05.004. [Google Scholar]
  29. R.V. Craster, S. Guenneau, Acoustic metamaterials, Springer Verlag, London, 2012. [Google Scholar]
  30. J.L. Auriault, C. Boutin, Long wavelength inner-resonance cut-off frequencies in elastic composite materials, Int. J. Solids Struct. 49 (2012) 3269–3281. [CrossRef] [Google Scholar]
  31. R.M. Christensen, K.H. Lo, Solution for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids 27 (1979) 315–330. [CrossRef] [Google Scholar]
  32. S. Nemat-Nasser, J.R. Willis, Homogenization of periodic elastic composites and locally resonant sonic materials, Phys. Rev. B. 83 (2011) 104103. [CrossRef] [Google Scholar]
  33. R.V. Craster, J. Kaplunov, A.V. Pichugin, High frequency homogenization for periodic media, Proc. R. Soc. Lond. A 466 (2010) 2341–2362. [Google Scholar]
  34. T. Antonakakis, R.V. Craster, High frequency asymptotics for microstructured thin elastic plates and platonics, Proc. R. Soc. Lond. A 468 (2012) 1408–1427. [CrossRef] [Google Scholar]
  35. T. Antonakakis, R.V. Craster, S. Guenneau, Homogenisation for elastic photonic crystals and metamaterials, J. Mech. Phys. Solids 17 (2014) 84. [CrossRef] [Google Scholar]
  36. A. Srivastava, Elastic metamaterials and dynamic homogenization: a review, Int. J. Smart & Nano Mat. 6 (2015) 41–60. [CrossRef] [Google Scholar]
  37. J.-L. Auriault, Effective macroscopic description for heat conduction in periodic composites, Int. J. Heat Mass Transf. 26 (1983) 861–869. [CrossRef] [Google Scholar]
  38. J.-L. Auriault, G. Bonnet, Dynamique des composites élastiques périodiques, Arch. Mech. 37 (1985) 269–284. [Google Scholar]
  39. V.V. Zhikov, On an extension of the method of two-scale convergence and its applications, Sbor. Math. 191 (2000) 973–1014. [CrossRef] [MathSciNet] [Google Scholar]
  40. V.P. Smyshlyaev, Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization, Mech. Mater. 41 (2009) 434–447. [CrossRef] [Google Scholar]
  41. X.X. Su, Y.F. Wang, Y.S. Wang, Effects of Poisson’s ratio on the band gaps and defect states in two-dimensional vacuum: solid porous phononic crystals, Ultrasonics 52 (2012) 225–265. [Google Scholar]
  42. O. Sigmund, J.S. Jensen, Systematic design of phononic band–gap materials and structures by topology optimization, Philos. Trans. R. Soc. Lond. Ser. A 361 (2003) 1001–1019. [CrossRef] [Google Scholar]
  43. Y. Achaoui, B. Ungureanu, S. Enoch, S. Brûlé, S. Guenneau, Seismic waves damping with arrays of inertial resonators, arXiv:1512.06078, 2015. [Google Scholar]
  44. P. Wang, F. Casadei, S. Shan, JC Weaver, K Bertoldi, Harnessing buckling to design tunable locally resonant acoustic metamaterials, Phys. Rev. Lett. 113 (2014) 014301. [CrossRef] [Google Scholar]
  45. Y. Xiao, J. Wen, W. Wen, Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators, New J. Phys. 14 (2012) 033042. [CrossRef] [Google Scholar]
  46. D. Torrent, Y. Pennec, B. Djafari-Rouhani, Effective medium theory for elastic metamaterials in thin elastic plates, Phys. Rev. B 90 (2014) 104110. [CrossRef] [Google Scholar]
  47. J.N. Grima, L. Mizzi, K.M. Azzopardi, R. Gatt, Auxetic perforated mechanical metamaterials with randomly oriented cuts, Adv. Mater. 28 (2015) 385–389, DOI: 10.1002/adma.201503653. [Google Scholar]
  48. J.N. Grima, R. Caruana-Gauci, K.W. Wojciechowski, R. Gatt, Smart metamaterials with tunable auxetic and other properties, Smart Mater. Struc. 22 (2013) 084016. [CrossRef] [Google Scholar]
  49. J.N. Grima, R. Caruana-Gauci, Mechanical metamaterials: materials that push back, Nat. Mater. 11 (2012) 565–566. [Google Scholar]
  50. Z.G. Nicolau, A.E. Motter, Mechanical metamaterials with negative compressibility transitions, Nat. Mater. 11 (2012) 608–613. [CrossRef] [Google Scholar]
  51. S. Babaee, J. Shim, J.C. Weaver, E.R. Chen, N. Patel, K. Bertoldi, 3D soft metamaterials with negative Poisson’s ratio, Adv. Mater. 25 (2013) 5044–5049. [CrossRef] [Google Scholar]
  52. R. Lakes, Advances in negative Poisson’s ratio materials, Adv. Mater. 5 (1993) 293–296. [Google Scholar]
  53. J. Christensen, M. Kadic, O. Kraft, M. Wegener, Vibrant times for mechanical metamaterials, MRS Communications 5 (2015) 453–462. [CrossRef] [Google Scholar]
  54. P.S. Theocaris, G.E. Stavroulakis, P.D. Panagiotopoulos, Negative Poisson’s ratio in composites with star-shaped inclusions: a numerical homogenization approach, Arch. Appl. Mech. 67 (1997) 274–286. [CrossRef] [Google Scholar]
  55. P.S. Theocaris, G.E. Stavroulakis, The homogenization method for the study of Poisson’s ratio in fiber composites, Arch. Appl. Mech. 68 (1998) 281–295. [CrossRef] [Google Scholar]
  56. R.F. Almgren, An isotropic three-dimensional structure with Poisson’s ratio = -1, J. Electricity 15 (1985) 427–430. [Google Scholar]
  57. G.W. Milton, The theory of composites, Cambridge University Press, 2002. [Google Scholar]
  58. S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Acoustic metamaterial with negative modulus, J. Phys.: Condens. Matter 21 (2009) 175704. [CrossRef] [Google Scholar]
  59. R. Reitherman, Earthquakes and Engineers: An International History, ASCE Press, Reston, VA, 2012. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.