Issue |
EPJ Applied Metamaterials
Volume 2, 2015
Advanced Metamaterials in Microwaves, Optics and Mechanics
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/epjam/2016001 | |
Published online | 26 February 2016 |
https://doi.org/10.1051/epjam/2016001
Research Article
Auxetic-like metamaterials as novel earthquake protections
1
Faculty of Civil Engineering and Building Services Technical University “Gheorghe Asachi” of Iasi, 43, Dimitrie Mangeron Blvd., 700050
Iasi, Romania
2
Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR7249, 13013
Marseille, France
3
Dynamic Soil Laboratory, Ménard, 91620
Nozay, France
* e-mail: sebastien.guenneau@fresnel.fr
Received:
15
September
2015
Accepted:
31
December
2015
Published online: 26 February 2016
We propose that wave propagation through a class of mechanical metamaterials opens unprecedented avenues in seismic wave protection based on spectral properties of auxetic-like metamaterials. The elastic parameters of these metamaterials like the bulk and shear moduli, the mass density, and even the Poisson ratio, can exhibit negative values in elastic stop bands. We show here that the propagation of seismic waves with frequencies ranging from 1 Hz to 40 Hz can be influenced by a decameter scale version of auxetic-like metamaterials buried in the soil, with the combined effects of impedance mismatch, local resonances and Bragg stop bands. More precisely, we numerically examine and illustrate the markedly different behaviors between the propagation of seismic waves through a homogeneous isotropic elastic medium (concrete) and an auxetic-like metamaterial plate consisting of 43 cells (40 m × 40 m × 40 m), utilized here as a foundation of a building one would like to protect from seismic site effects. This novel class of seismic metamaterials opens band gaps at frequencies compatible with seismic waves when they are designed appropriately, what makes them interesting candidates for seismic isolation structures.
Key words: Stop bands / Auxetics / Mechanical metamaterials / Seismic waves
© B. Ungureanu et al., Published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.