Issue |
EPJ Appl. Metamat.
Volume 4, 2017
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/epjam/2017009 | |
Published online | 05 December 2017 |
https://doi.org/10.1051/epjam/2017009
Research Article
Negative inductance circuits for metamaterial bandwidth enhancement
1
GeePs, UMR CNRS 8507, CentraleSupélec, Université Paris-Saclay,
91192
Gif-Sur-Yvette, France
2
ONERA – The French Aerospace Lab,
91120
Palaiseau, France
3
SONDRA, CentraleSupélec, Université Paris-Saclay,
91192
Gif-Sur-Yvette, France
* e-mail: fabrice.boust@onera.fr
Received:
3
June
2017
Received in final form:
19
October
2017
Accepted:
27
October
2017
Published online: 5 December 2017
Passive metamaterials have yet to be translated into applications on a large scale due in large part to their limited bandwidth. To overcome this limitation many authors have suggested coupling metamaterials to non-Foster circuits. However, up to now, the number of convincing demonstrations based on non-Foster metamaterials has been very limited. This paper intends to clarify why progress has been so slow, i.e., the fundamental difficulty in making a truly broadband and efficient non-Foster metamaterial. To this end, we consider two families of metamaterials, namely Artificial Magnetic Media and Artificial Magnetic Conductors. In both cases, it turns out that bandwidth enhancement requires negative inductance with almost zero resistance. To estimate bandwidth enhancement with actual non-Foster circuits, we consider two classes of such circuits, namely Linvill and gyrator. The issue of stability being critical, both metamaterial families are studied with equivalent circuits that include advanced models of these non-Foster circuits. Conclusions are different for Artificial Magnetic Media coupled to Linvill circuits and Artificial Magnetic Conductors coupled to gyrator circuits. In the first case, requirements for bandwidth enhancement and stability are very hard to meet simultaneously whereas, in the second case, an adjustment of the transistor gain does significantly increase bandwidth.
Key words: Metamaterials / Non-Foster circuit / Linvill / Gyrator / Artificial magnetic media / Artificial magnetic conductor
© E. Avignon-Meseldzija et al., published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.