Issue |
EPJ Applied Metamaterials
Volume 2, 2015
Advanced Metamaterials in Microwaves, Optics and Mechanics
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/epjam/2015007 | |
Published online | 26 January 2016 |
https://doi.org/10.1051/epjam/2015007
Research Article
Optic axis-driven new horizons for hyperbolic metamaterials
1
Joule Physics Laboratory, Materials & Physics Research Centre, University of Salford, Greater Manchester
M5 4WT, UK
2
Blackett Laboratory, Imperial College, Prince Consort Road, London
SW7 2AZ, UK
* e-mail: a.d.boardman@salford.ac.uk
Received:
1
September
2015
Accepted:
28
October
2015
Published online: 26 January 2016
The broad assertion here is that the current hyperbolic metamaterial world is only partially served by investigations that incorporate only some limited version of anisotropy. Even modest deviations of the optic axis from the main propagation axis lead to new phase shifts, which not only compete with those created by absorption but end up dominating them. Some progress has been attempted in the literature by introducing the terms “asymmetric hyperbolic media”, but it appears that this kind of asymmetry only involves an optic axis at an angle to the interface of a uniaxial crystal. From a device point of view, many new prospects should appear and the outcomes of the investigations presented here yield a new general theory. It is emphasised that the orientation of the optic axis is a significant determinant in the resulting optical properties. Whereas for conventional anisotropic waveguides homogeneous propagating waves occur over a limited range of angular dispositions of the optic axis it is shown that for a hyperbolic guide a critical angular setting exists, above which the guided waves are always homogeneous. This has significant implications for metawaveguide designs. The resulting structures are more tolerant to optic axis misalignment.
Key words: Metamaterial / Hyperbolic / Uniaxial / Optic axis
© A.D. Boardman et al., published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.