Issue |
EPJ Applied Metamaterials
Volume 2, 2015
Advanced Metamaterials in Microwaves, Optics and Mechanics
|
|
---|---|---|
Article Number | 10 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/epjam/2015017 | |
Published online | 26 January 2016 |
https://doi.org/10.1051/epjam/2015017
Research Article
Subwavelength perfect acoustic absorption in membrane-type metamaterials: a geometric perspective
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
* e-mail: sheng@ust.hk
Received:
2
September
2015
Accepted:
3
December
2015
Published online: 26 January 2016
Perfect absorption of low frequency sound with subwavelength absorbers has always been a challenge, owing to the difficulty in achieving impedance matching and the inherent weak absorption coefficients of materials at low frequencies. Recently it was shown that when a membrane-type resonator’s modes are hybridized through the addition of a thin air-sealed cell with a back reflecting surface, perfect absorption of low frequency acoustic wave can be achieved at a particular tunable frequency. Here we use a geometric perspective, based on the fact that the membrane is very thin and therefore the displacements on both sides of the membrane must be the same, to gain a unified framework for deriving absorption upper bounds as well as for understanding the hybrid resonance and the coherent perfect absorption on the same footing. The latter is another scheme for perfect absorption based on the phase coherence of two counter-propagating waves incident upon the membrane-type resonator. Experiments were carried out to verify some relations predicted by the general framework based on this geometric perspective. Excellent agreement between theory and experiment is seen.
Key words: Metamaterials / Decorated membrane resonator / Low-frequency sounds absorption / Coherent perfect absorption / Hybrid resonance metasurface / Geometric perspective
© M. Yang et al., Published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.