EPJ Appl. Metamat.
Volume 11, 2024
Special Issue on ‘Metamaterials for Novel Wave Phenomena: Theory, Design and Application in Microwaves’, edited by Sander Mann and Stefano Vellucci
Article Number 1
Number of page(s) 6
Published online 02 February 2024
  1. C. Ciracì, R. Hill, J. Mock, Y. Urzhumov, A. Fernández-Domínguez, S. Maier, J. Pendry, A. Chilkoti, D. Smith, Probing the ultimate limits of plasmonic enhancement, Science 337, 1072 (2012) [CrossRef] [Google Scholar]
  2. R. Chikkaraddy, B. De Nijs, F. Benz, S.J. Barrow, O.A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J.J. Baumberg, Single-molecule strong coupling at room temperature in plasmonic nanocavities, Nature 535, 127 (2016) [CrossRef] [Google Scholar]
  3. J.J. Baumberg, J. Aizpurua, M.H. Mikkelsen, D.R. Smith, Extreme nanophotonics from ultrathin metallic gaps, Nat. Mater. 18, 668 (2019) [CrossRef] [Google Scholar]
  4. D.Y. Lei, A.I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R.F. Haglund Jr, J.B. Pendry, S.A. Maier, Revealing plasmonic gap modes in particle-on-film systems using dark- field spectroscopy, Acs Nano 6, 1380 (2012) [CrossRef] [Google Scholar]
  5. E. Elliott, K. Bedingfield, J. Huang, S. Hu, B. de Nijs, A. Demetriadou, J.J. Baumberg, Fingerprinting the hidden facets of plasmonic nanocavities, ACS Photonics 9, 2643(2022) [CrossRef] [Google Scholar]
  6. S. Mubeen, S. Zhang, N. Kim, S. Lee, S. Kramer, H. Xu, M. Moskovits, Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide, Nano Lett. 12, 2088 (2012) [CrossRef] [Google Scholar]
  7. F. Benz, C. Tserkezis, L.O. Herrmann, B. De Nijs, A. Sanders, D.O. Sigle, L. Pukenas, S.D. Evans, J. Aizpurua, J.J. Baumberg, Nanooptics of molecular-shunted plasmonic nanojunctions, Nano Lett. 15, 669 (2015) [CrossRef] [Google Scholar]
  8. G.-C. Li, Y.-L. Zhang, J. Jiang, Y. Luo, D.Y. Lei, Metal-substrate-mediated plasmon hybridization in a nanoparticle dimer for photoluminescence line-width shrinking and intensity enhancement, ACS Nano 11, 3067 (2017) [CrossRef] [Google Scholar]
  9. A. Rose, T.B. Hoang, F. McGuire, J.J. Mock, C. Ciracì, D.R. Smith, M.H. Mikkelsen, Control of radiative processes using tunable plasmonic nanopatch antennas, Nano Lett. 14, 4797 (2014) [CrossRef] [Google Scholar]
  10. G.-C. Li, D. Lei, M. Qiu, W. Jin, S. Lan, A.V. Zayats, Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity, Nat. Commun. 12, 4326 (2021) [CrossRef] [Google Scholar]
  11. J.J. Mock, R.T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, D.R. Smith, Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film, Nano Lett. 8, 2245 (2008) [CrossRef] [Google Scholar]
  12. R.E. Armstrong, J. Van Liempt, P. Zijlstra, Effect of film thickness on the far-and near-field optical response of nanoparticle-on-film systems, J. Phys. Chem. C 123, 25801 (2019) [CrossRef] [Google Scholar]
  13. T. Ding, D. Sigle, L. Zhang, J. Mertens, B. de Nijs, J. Baumberg, Controllable tuning plasmonic coupling with nanoscale oxidation, ACS Nano 9, 6110 (2015) [CrossRef] [Google Scholar]
  14. C. Lumdee, B. Yun, P.G. Kik, Gap-plasmon enhanced gold nanoparticle photolumines-cence, ACS Photonics 1, 1224 (2014) [CrossRef] [Google Scholar]
  15. M. Hu, A. Ghoshal, M. Marquez, P.G. Kik, Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances, J. Phys. Chem. C 114, 7509 (2010) [CrossRef] [Google Scholar]
  16. S.M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Material platforms for optical metasurfaces, Nanophotonics 7, 959 (2018) [CrossRef] [Google Scholar]
  17. W. Jia, M. Liu, Y. Lu, X. Feng, Q. Wang, X. Zhang, Y. Ni, F. Hu, M. Gong, X. Xu et al., Broadband terahertz wave generation from an epsilon-near-zero material, Light: Sci. Appl. 10, 11 (2021) [CrossRef] [Google Scholar]
  18. S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J.-L. Pelouard, J.-J. Greffet, Epsilon-near-zero mode for active optoelectronic devices, Phys. Rev. Lett. 109, 237401 (2012) [CrossRef] [Google Scholar]
  19. J. Wu, Z.T. Xie, Y. Sha, H. Fu, Q. Li, Epsilon-near-zero photonics: infinite potentials, Photonics Res. 9, 1616 (2021) [CrossRef] [Google Scholar]
  20. S. Vassant, J.-P. Hugonin, F. Marquier, J.-J. Greffet, Berreman mode and epsilon near zero mode, Opt. Express 20, 23971 (2012) [CrossRef] [Google Scholar]
  21. P.B. Johnson, R.-W. Christy, Optical constants of the noble metals, Phys. Rev. B 6, 4370 (1972) [CrossRef] [Google Scholar]
  22. W. Streyer, K. Feng, Y. Zhong, A. Hoffman, D. Wasserman, Engineering the reststrahlen band with hybrid plasmon/phonon excitations, MRS Commun. 6, 1 (2016) [CrossRef] [Google Scholar]
  23. J. Kim, A. Dutta, G.V. Naik, A.J. Giles, F.J. Bezares, C.T. Ellis, J.G. Tischler, A.M. Mahmoud, H. Caglayan, O.J. Glembocki et al., Role of epsilon-near-zero substrates in the optical response of plasmonic antennas, Optica 3, 339 (2016) [CrossRef] [Google Scholar]
  24. S. Campione, J.R. Wendt, G.A. Keeler, T.S. Luk, Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers, ACS Photonics 3, 293 (2016) [CrossRef] [Google Scholar]
  25. Y. Yang, J. Lu, A. Manjavacas, T.S. Luk, H. Liu, K. Kelley, J.-P. Maria, E.L. Runner-strom, M.B. Sinclair, S. Ghimire et al., High-harmonic generation from an epsilon-near-zero material, Nat. Phys. 15, 1022 (2019) [CrossRef] [Google Scholar]
  26. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. Shalaev, A. Boltasseva, Epsilon-near-zero al-doped zno for ultrafast switching at telecom wavelengths, Optica 2, 616 (2015) [CrossRef] [Google Scholar]
  27. T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, T. Elsaesser, Ultra-fast nonlinear response of bulk plasmons in highly doped ZnO layers, Phys. Rev. Lett. 115, 147401 (2015) [CrossRef] [Google Scholar]
  28. R. Maas, J. Parsons, N. Engheta, A. Polman, Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths, Nat. Photonics 7, 907 (2013) [CrossRef] [Google Scholar]
  29. A.A. Basharin, C. Mavidis, M. Kafesaki, E.N. Economou, C.M. Soukoulis, Epsilon near zero based phenomena in metamaterials, Phys. Rev. B 87, 155130 (2013) [CrossRef] [Google Scholar]
  30. S. Campione, I. Brener, F. Marquier, Theory of epsilon-near-zero modes in ultrathin films, Phys. Rev. B 91, 121408 (2015) [CrossRef] [Google Scholar]
  31. J. Park, J.-H. Kang, X. Liu, M.L. Brongersma, Electrically tunable epsilon-near-zero (enz) metafilm absorbers, Sci. Rep. 5, 15754 (2015) [CrossRef] [Google Scholar]
  32. O. Reshef, I. De Leon, M.Z. Alam, R.W. Boyd, Nonlinear optical effects in epsilon-near- zero media, Nat. Rev. Mater. 4, 535 (2019) [CrossRef] [Google Scholar]
  33. P. Guo, R.D. Schaller, J.B. Ketterson, R.P. Chang, Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude, Nat. Photonics 10, 267 (2016) [CrossRef] [Google Scholar]
  34. A. Howes, W. Wang, I. Kravchenko, J. Valentine, Dynamic transmission control based on all-dielectric huygens metasurfaces, Optica 5, 787 (2018) [CrossRef] [Google Scholar]
  35. Y.-W. Huang, H.W.H. Lee, R. Sokhoyan, R.A. Pala, K. Thyagarajan, S. Han, D.P. Tsai, H.A. Atwater, Gate-tunable conducting oxide metasurfaces, Nano Lett. 16, 5319 (2016) [CrossRef] [PubMed] [Google Scholar]
  36. H. Suchowski, K. O’Brien, Z.J. Wong, A. Salandrino, X. Yin, X. Zhang, Phase mismatch-free nonlinear propagation in optical zero-index materials, Science 342, 1223 (2013) [CrossRef] [Google Scholar]
  37. M.Z. Alam, S.A. Schulz, J. Upham, I. De Leon, R.W. Boyd, Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material, Nat. Photonics 12, 79 (2018) [CrossRef] [Google Scholar]
  38. M.Z. Alam, I. De Leon, R.W. Boyd, Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region, Science 352, 795 (2016) [NASA ADS] [CrossRef] [Google Scholar]
  39. Y.C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, I. Brener, Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures, Nano Lett. 13, 5391 (2013) [CrossRef] [Google Scholar]
  40. K. Manukyan, M.Z. Alam, C. Liu, K. Pang, H. Song, Z. Zhao, M. Tur, R.W. Boyd, A.E. Willner, Dependence of the coupling properties between a plasmonic antenna array and a sub-wavelength epsilon-near-zero film on structural and material parameters, Appl. Phys. Lett. 118, 241102 (2021) [CrossRef] [Google Scholar]
  41. C.K. Dass, H. Kwon, S. Vangala, E.M. Smith, J.W. Cleary, J. Guo, A. Alu, J.R. Hendrickson, Gap-plasmon-enhanced second-harmonic generation in epsilon-near-zero nanolayers, ACS Photonics 7, 174 (2019) [Google Scholar]
  42. J. Deng, Y. Tang, S. Chen, K. Li, A.V. Zayats, G. Li, Giant enhancement of second-order nonlinearity of epsilon-near-zero medium by a plasmonic metasurface, Nano Lett. 20, 5421 (2020) [CrossRef] [Google Scholar]
  43. COMSOL Multiphysics. [Google Scholar]
  44. F. Yang, C. Ciracì, Transformation optics description of direct and cascaded third-harmonic generation, ACS Photonics 10, 2618 (2023) [CrossRef] [Google Scholar]
  45. A. Capretti, Y. Wang, N. Engheta, L. Dal Negro, Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range, Acs Photonics 2, 1584 (2015) [CrossRef] [Google Scholar]
  46. F. Yang, C. Ciracì, Second-harmonic generation from singular metasurfaces, Phys. Rev. B 105, 235432 (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.