Open Access
EPJ Appl. Metamat.
Volume 9, 2022
Article Number 4
Number of page(s) 7
Published online 17 February 2022
  1. C.L. Kane, E.J. Mele, Physics: a new spin on the insulating state, Science (New York, NY) 314, 1692 (2006) [CrossRef] [Google Scholar]
  2. X.-L. Qi, S.-C. Zhang, The quantum spin Hall effect and topological insulators, Phys. Today 63, 33 (2010) [Google Scholar]
  3. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators, Rev. Mod. Phys. 82, 3045 (2010) [CrossRef] [Google Scholar]
  4. X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011) [CrossRef] [Google Scholar]
  5. A.B. Khanikaev, S.H. Mousavi, W.K. Tse, M. Kargarian, A.H. MacDonald, G. Shvets, Photonic topological insulators, Nat. Mater. 12, 223 (2013) [Google Scholar]
  6. E. Prodan, Disordered topological insulators: a non-commutative geometry perspective, J. Phys. A: Math. Theor. 44, 113001 (2011) [CrossRef] [Google Scholar]
  7. L. Zhang et al., Universal transport properties of three-dimensional topological insulator nanowires, Phys. Rev. B 89, 245107 (2014) [CrossRef] [Google Scholar]
  8. J. Li, R.L. Chu, J.K. Jain, S.Q. Shen, Topological Anderson insulator, Phys. Rev. Lett. 102, 136806 (2009) [CrossRef] [Google Scholar]
  9. Y. Xing, L. Zhang, J. Wang, Topological Anderson insulator phenomena, Phys. Rev. B 84, 035110 (2011) [CrossRef] [Google Scholar]
  10. H.M. Guo, G. Rosenberg, G. Refael, M. Franz, Topological Anderson insulator in three dimensions, Phys. Rev. Lett. 105, 216601 (2010) [CrossRef] [Google Scholar]
  11. C.W. Groth, M. Wimmer, A.R. Akhmerov, J. Tworzydło, C.W.J. Beenakker, Theory of the topological Anderson insulator, Phys. Rev. Lett. 103, 196805 (2009) [CrossRef] [Google Scholar]
  12. S. Stützer et al., Photonic topological Anderson insulators, Nature 560, 461 (2018) [CrossRef] [Google Scholar]
  13. I. Mondragon-Shem, T.L. Hughes, J. Song, E. Prodan, Topological criticality in the chiral-symmetric AIII class at strong disorder, Phys. Rev. Lett. 113, 046802 (2014) [CrossRef] [Google Scholar]
  14. E. Prodan, T.L. Hughes, B.A. Bernevig, Entanglement spectrum of a disordered topological chern insulator, Phys. Rev. Lett. 105, 115501 (2010) [CrossRef] [Google Scholar]
  15. H. Huang, F. Liu, Quantum spin Hall effect and spin Bott index in a quasicrystal lattice, Phys. Rev. Lett. 121, 126401 (2018) [CrossRef] [Google Scholar]
  16. X.S. Wang, A. Brataas, R.E. Troncoso, Bosonic Bott index and disorder-induced topological transitions of magnons, Phys. Rev. Lett. 125, 217202 (2020) [CrossRef] [Google Scholar]
  17. N.P. Mitchell et al., Amorphous topological insulators constructed from random point sets, Nat. Phys. 14, 380 (2018) [CrossRef] [Google Scholar]
  18. A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006) [CrossRef] [Google Scholar]
  19. T. Jiang, M. Xiao, W.J. Chen, L. Yang, Y. Fang, W.Y. Tam, C.T. Chan, Experimental demonstration of angular momentum-dependent topological transport using a transmission line network, Nat. Commun. 10, 434 (2019) [CrossRef] [Google Scholar]
  20. F.D.M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61, 2015 (1988) [CrossRef] [Google Scholar]
  21. M. Xiao, W.-J. Chen, W.Y. He, C.T. Chan, Synthetic gauge flux and Weyl points in acoustic systems, Nat. Phys. 11, 920 (2015) [CrossRef] [Google Scholar]
  22. W.-J. Chen, M. Xiao, C.T. Chan, Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states, Nat. Commun. 7, 13038 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.