Issue
EPJ Appl. Metamat.
Volume 9, 2022
Metamaterials for Novel Wave Phenomena in Microwaves, Optics, and Mechanics
Article Number 16
Number of page(s) 7
DOI https://doi.org/10.1051/epjam/2022012
Published online 19 July 2022
  1. D.W. Sweeney, G.E. Sommargren, Harmonic diffractive lenses, Appl. Opt. 34, 2469 (1995) [CrossRef] [Google Scholar]
  2. J. Engelberg, U. Levy, The advantages of metalenses over diffractive lenses, Nat. Commun. 11, 1991 (2020) [CrossRef] [Google Scholar]
  3. S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon, Imaging with at optics: metalenses or diffractive lenses?, Optica 6, 805 (2019) [CrossRef] [Google Scholar]
  4. J. Engelberg, U. Levy, Achromatic at lens performance limits, Optica 8, 834 (2021) [CrossRef] [Google Scholar]
  5. F. Ding, A. Pors, S.I. Bozhevolnyi, Gradient meta-surfaces: a review of fundamentals and applications, Rep. Prog. Phys. 81, 026401 (2018) [CrossRef] [Google Scholar]
  6. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, R. Devlin, Recent advances in planar optics: from plasmonic to dielectric metasurfaces, Optica 4, 139 (2017) [CrossRef] [Google Scholar]
  7. M. Decker, W.T. Chen, T. Nobis, A.Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, J. Petschulat, Imaging performance of polarization-insensitive metalenses, ACS Photonics 6, 1493 (2019) [CrossRef] [Google Scholar]
  8. A. Arbabi, Y. Horie, A.J. Ball, M. Bagheri, A. Faraon, Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays, Nat. Commun. 6, 7069 (2015) [CrossRef] [Google Scholar]
  9. P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives: metalenses at visible wavelengths: past, present, perspectives, Laser Photon. Rev. 11, 1600295 (2017). [CrossRef] [Google Scholar]
  10. M.L. Tseng, H.-H. Hsiao, C.H. Chu, M.K. Chen, G. Sun, A.-Q. Liu, D.P. Tsai, Metalenses: advances and applications, Adv. Opt. Mater. 6, 1800554 (2018) [CrossRef] [Google Scholar]
  11. M. Khorasaninejad, F. Capasso, Metalenses: versatile functional photonic components, Science 358, eaam8100 (2017) [CrossRef] [Google Scholar]
  12. N. Yu, F. Capasso, Flat optics with designer meta-surfaces, Nat. Mater 13, 139 (2014) [CrossRef] [Google Scholar]
  13. B. Yu, J. Wen, L. Chen, L. Zhang, Y. Fan, B. Dai, S. Kanwal, D. Lei, D. Zhang, Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces, Photon. Res. 8, 1148 (2020) [CrossRef] [Google Scholar]
  14. W.T. Chen, A.Y. Zhu, F. Capasso, Flat optics with dispersion-engineered metasurfaces, Nat. Rev. Mater. 5, 604 (2020) [CrossRef] [Google Scholar]
  15. E. Arbabi, A. Arbabi, S.M. Kamali, Y. Horie, A. Faraon, Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces, Optica 4, 625 (2017) [CrossRef] [Google Scholar]
  16. S. Shrestha, A.C. Overvig, M. Lu, A. Stein, N. Yu, Broadband achromatic dielectric metalenses, Light Sci. Appl. 7, 85 (2018) [CrossRef] [Google Scholar]
  17. W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible, Nat. Nanotech. 13, 220 (2018) [CrossRef] [Google Scholar]
  18. W.T. Chen, A.Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso, A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures, Nat. Commun. 10, 355 (2019) [CrossRef] [Google Scholar]
  19. F. Presutti, F. Monticone, Focusing on bandwidth: achromatic metalens limits, Optica 7, 624 (2020) [CrossRef] [Google Scholar]
  20. D.A.B. Miller, Fundamental Limit to Linear One-Dimensional Slow Light Structures, Phys. Rev. Lett. 99, 203903 (2007) [CrossRef] [Google Scholar]
  21. D.A.B. Miller, Fundamental limit for optical components, J. Opt. Soc. Am. B 24, A1 (2007) [CrossRef] [Google Scholar]
  22. Z. Huang, M. Qin, X. Guo, C. Yang, S. Li, Achromatic and wide-field metalens in the visible region, Opt. Express 29, 13542 (2021) [CrossRef] [Google Scholar]
  23. Z. Lin, C. Roques-Carmes, R.E. Christiansen, M. Soljai, S.G. Johnson, Computational inverse design for ultra-compact single-piece metalenses free of chromatic and angular aberration, Appl. Phys. Lett. 118, 041104 (2021) [CrossRef] [Google Scholar]
  24. A. Martins, K. Li, J. Li, H. Liang, D. Conteduca, B.-H.V. Borges, T.F. Krauss, E.R. Martins, On metalenses with arbitrarily wide field of view, ACS Photonics 7, 2073 (2020) [CrossRef] [Google Scholar]
  25. C.-Y. Fan, C.-P. Lin, G.-D.J. Su, Ultrawide-angle and high-efficiency metalens in hexagonal arrangement, Sci. Rep. 10, 15677 (2020) [Google Scholar]
  26. C. Chen, P. Chen, J. Xi, W. Huang, K. Li, L. Liang, F. Shi, J. Shi, On-chip monolithic wide-angle field-of-view metalens based on quadratic phase profile, AIP Adv. 10, 115213 (2020) [CrossRef] [Google Scholar]
  27. Y. Guo, X. Ma, M. Pu, X. Li, Z. Zhao, X. Luo, High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin Metalens, Adv. Opt. Mater. 6, 1800592 (2018) [CrossRef] [Google Scholar]
  28. F. Aieta, P. Genevet, M. Kats, F. Capasso, Aberrations of at lenses and aplanatic metasurfaces, Opt. Express 21, 31530 (2013) [CrossRef] [Google Scholar]
  29. J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. Starr, D.R. Smith, Broadband wide angle lens implemented with dielectric metamaterials, Sensors 11, 7982 (2011) [CrossRef] [Google Scholar]
  30. A. Kalvach, Z. Szab, Aberration-free at lens design for a wide range of incident angles, J. Opt. Soc. Am. B 33, A66 (2016) [CrossRef] [Google Scholar]
  31. M.Y. Shalaginov, S. An, F. Yang, P. Su, D. Lyzwa, A.M. Agarwal, H. Zhang, J. Hu, T. Gu, Single-element diffraction-limited fisheye metalens, Nano Lett. 20, 7429 (2020) [CrossRef] [Google Scholar]
  32. A. Arbabi, E. Arbabi, S.M. Kamali, Y. Horie, S. Han, A. Faraon, Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations, Nat. Commun. 7, 13682 (2016) [CrossRef] [Google Scholar]
  33. B. Groever, W.T. Chen, F. Capasso, Meta-lens doublet in the visible region, Nano Lett. 17, 4902 (2017) [CrossRef] [Google Scholar]
  34. F. Yang, F. Yang, S. An, M.Y. Shalaginov, H. Zhang, C. Rivero-Baleine, J. Hu, J. Hu, T. Gu, T. Gu, Design of broadband and wide-field-of-view metalenses, Opt. Lett. 46, 5735 (2021). [CrossRef] [Google Scholar]
  35. S.M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, M. Faraji-Dana, A. Faraon, Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles, Phys. Rev. X 7, 041056 (2017) [Google Scholar]
  36. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Al, N. Engheta, Performing mathematical operations with metamaterials, Science 343, 160 (2014) [CrossRef] [Google Scholar]
  37. F. Monticone, C.A. Valagiannopoulos, A. Alu, Parity-time symmetric nonlocal metasurfaces: all-angle negative refraction and volumetric imaging, Phys. Rev. X 6, 041018 (2016) [Google Scholar]
  38. A.C. Overvig, S.A. Mann, A. Al, Thermal metasurfaces: complete emission control by combining local and nonlocal light-matter interactions, Phys. Rev. X 11, 021050 (2021) [Google Scholar]
  39. A.C. Overvig, S.C. Malek, N. Yu, Multifunctional nonlocal metasurfaces, Phys. Rev. Lett. 125, 017402 (2020) [CrossRef] [Google Scholar]
  40. O. Reshef, M.P. DelMastro, K.K. Bearne, A.H. Alhulaymi, L. Giner, R.W. Boyd, J.S. Lundeen, An optic to replace space and its application towards ultra-thin imaging systems, Nat. Commun. 12, 1 (2021) [CrossRef] [Google Scholar]
  41. C. Guo, H. Wang, S. Fan, Squeeze free space with nonlocal at optics, Optica 7, 1133 (2020) [CrossRef] [Google Scholar]
  42. A. Chen, F. Monticone, Dielectric nonlocal metasurfaces for fully solid-state ultrathin optical systems, ACS Photon. 8, 1439 (2021) [CrossRef] [Google Scholar]
  43. K. Shastri, O. Reshef, R.W. Boyd, J.S. Lundeen, F. Monticone, To what extent can space be compressed? Bandwidth limits of spaceplates, arXiv:2201.11340 (2022) [Google Scholar]
  44. S.A. Mann, D.L. Sounas, A. Al, Nonreciprocal cavities and the timebandwidth limit, Optica 6, 104 (2019) [CrossRef] [Google Scholar]
  45. Z. Wang, S. Fan, Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines, Phys. Rev. E 68, 066616 (2003) [CrossRef] [Google Scholar]
  46. R. Tucker, P.-C. Ku, C. Chang-Hasnain, Slow-light optical buffers: capabilities and fundamental limitations, J. Lightwave Technol. 23, 4046 (2005) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.