EPJ Appl. Metamat.
Volume 8, 2021
Metamaterial Research Updates from China
Article Number 1
Number of page(s) 6
Published online 19 January 2021
  1. D.R. Smith, J.B. Pendry, M.C. Wiltshire, Metamaterials and negative refractive index, Science 305, 788 (2004) [CrossRef] [PubMed] [Google Scholar]
  2. M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3, 793 (2006) [CrossRef] [PubMed] [Google Scholar]
  3. C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers, Adv. Mater. 24, OP98 (2012) [Google Scholar]
  4. M.K. Hedayati, F. Faupel, M. Elbahri, Review of plasmonic nanocomposite metamaterial absorber, Materials 7, 1221 (2014) [CrossRef] [Google Scholar]
  5. C. Caloz, T. Itoh, A. Rennings, CRLH metamaterial leaky-wave and resonant antennas, IEEE Trans. Antennas Propag. 50, 25 (2008) [CrossRef] [Google Scholar]
  6. R.W. Ziolkowski, P. Jin, C.-C. Lin, Metamaterial-inspired engineering of antennas, Proc IEEE 99, 1720 (2010) [CrossRef] [Google Scholar]
  7. J. Pendry, D. Schurig, D. Smith, Controlling electromagnetic fields, Science 312, 1780 (2006) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314, 977 (2006) [CrossRef] [PubMed] [Google Scholar]
  9. R. Liu, C. Ji, J.J. Mock, J.Y. Chin, T.J. Cui, D.R. Smith, Broadband ground-plane cloak, Science 323, 366 (2009) [CrossRef] [Google Scholar]
  10. L. Sun, Z. Shi, L. Liang, S. Wei, H. Wang, D. Dastan, K. Sun, R. Fan, Layer-structured BaTiO3/P(VDF–HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications, J. Mater. Chem. C 8, 10257 (2020) [CrossRef] [Google Scholar]
  11. L. Sun, Z. Shi, H. Wang, K. Zhang, D. Dastan, K. Sun, R. Fan, Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide–BaTiO3/P(VDF-HFP) composites, J. Mater. Chem. A 8, 5750 (2020) [CrossRef] [Google Scholar]
  12. C. Cheng, Y. Jiang, X. Sun, J. Shen, R. Fan, Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites, Compos. Part A Appl. Sci. Manuf. 130, 105753 (2020) [CrossRef] [Google Scholar]
  13. F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, Ultra-broadband microwave metamaterial absorber, Appl. Phys. Lett. 100, 103506 (2012) [CrossRef] [Google Scholar]
  14. S. Feng, K. Halterman, Parametrically shielding electromagnetic fields by nonlinear metamaterials, Phys. Rev. Lett. 100, 063901 (2008) [CrossRef] [Google Scholar]
  15. N. Limberopoulos, A. Akyurtlu, K. Higginson, A.-G. Kussow, C.D. Merritt, Negative refractive index metamaterials in the visible spectrum based on MgB2/SiC composites, Appl. Phys. Lett. 95, 186 (2009) [CrossRef] [Google Scholar]
  16. H. Chen, L. Ran, D. Wang, J. Huangfu, Q. Jiang, J.A. Kong, Metamaterial with randomized patterns for negative refraction of electromagnetic waves, Appl. Phys. Lett. 88, 031908 (2006) [CrossRef] [Google Scholar]
  17. K. Hur, Y. Francescato, V. Giannini, S.A. Maier, R.G. Hennig, U. Wiesner, Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks, Angew. Chem. Int. Ed. 50, 11985 (2011) [CrossRef] [Google Scholar]
  18. G.V. Eleftheriades, A.K. Iyer, P.C. Kremer, Planar negative refractive index media using periodically LC loaded transmission lines, IEEE Trans. Microw. Theory 50, 2702 (2002) [CrossRef] [Google Scholar]
  19. S. Chui, L. Hu, Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites, Phys. Rev. B 65, 144407 (2002) [CrossRef] [Google Scholar]
  20. X. Ao, S. He, Negative refraction of left-handed behavior in porous alumina with infiltrated silver at an optical wavelength, Appl. Phys. Lett. 87, 101112 (2005) [CrossRef] [Google Scholar]
  21. Z. Shi, R. Fan, Z. Zhang, H. Gong, J. Ouyang, Y. Bai, X. Zhang, L. Yin, Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites, Appl. Phys. Lett. 99, 032903 (2011) [CrossRef] [Google Scholar]
  22. Z.c. Shi, R.h. Fan, Z.d. Zhang, L. Qian, M. Gao, M. Zhang, L.t. Zheng, X.h. Zhang, L.w. Yin, Random composites of nickel networks supported by porous alumina toward double negative materials, Adv. Mater. 24, 2349 (2012) [CrossRef] [Google Scholar]
  23. T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold, Appl. Phys. Lett. 102, 181904 (2013) [CrossRef] [Google Scholar]
  24. T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, Double negative electromagnetic property of granular composite materials in the microwave range, J. Magn. Magn. Mater. 383, 139 (2015) [CrossRef] [Google Scholar]
  25. T. Tsutaoka, K. Fukuyama, H. Kinoshita, T. Kasagi, S. Yamamoto, K. Hatakeyama, Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range, Appl. Phys. Lett. 103, 261906 (2013) [CrossRef] [Google Scholar]
  26. H. Massango, T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, Coexistence of gyromagnetic resonance and low frequency plasmonic state in the submicron Ni granular composite materials, J. Appl. Phys. 121, 103902 (2017) [CrossRef] [Google Scholar]
  27. B. Zhao, C.B. Park, Tunable electromagnetic shielding properties of conductive poly (vinylidene fluoride)/Ni chain composite films with negative permittivity, J. Mater. Chem. C 5, 6954 (2017) [CrossRef] [Google Scholar]
  28. K. Sun, P. Xie, Z. Wang, T. Su, Q. Shao, J. Ryu, X. Zhang, J. Guo, A. Shankar, J. Li, Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity, Polymer 125, 50 (2017) [CrossRef] [Google Scholar]
  29. Z. Wang, K. Sun, H. Wu, P. Xie, Z. Wang, X. Li, R. Fan, Compressible sliver nanowires/polyurethane sponge metacomposites with weakly negative permittivity controlled by elastic deformation, J. Mater. Sci. 55, 15481 (2020) [CrossRef] [Google Scholar]
  30. K. Sun, J. Qin, Z. Wang, Y. An, X. Li, B. Dong, X. Wu, Z. Guo, R. Fan, Polyvinyl alcohol/carbon fibers composites with tunable negative permittivity behavior, Surf. Interfaces 21, 100735 (2020) [CrossRef] [Google Scholar]
  31. D. Zhang, P. Wang, R.-i. Murakami, X. Song, Effect of an interface charge density wave on surface plasmon resonance in ZnO/Ag/ZnO thin films, Appl. Phys. Lett. 96, 233114 (2010) [CrossRef] [Google Scholar]
  32. H. Gu, J. Guo, M.A. Khan, D.P. Young, T. Shen, S. Wei, Z. Guo, Magnetoresistive polyaniline–silicon carbide metacomposites: plasma frequency determination and high magnetic field sensitivity, Phys. Chem. Chem. Phys. 18, 19536 (2016) [CrossRef] [Google Scholar]
  33. X. Yao, X. Kou, J. Qiu, Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability, Carbon 107, 261 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.